inorganic materials
Recently Published Documents


TOTAL DOCUMENTS

2740
(FIVE YEARS 585)

H-INDEX

91
(FIVE YEARS 15)

2022 ◽  
Vol 455 ◽  
pp. 214337
Author(s):  
Javier García-Ben ◽  
Lauren Nicole McHugh ◽  
Thomas Douglas Bennett ◽  
Juan Manuel Bermúdez-García
Keyword(s):  

2022 ◽  
Vol 157 ◽  
pp. 112047
Author(s):  
Amin Alizadeh ◽  
Mostafa Roudgar-Amoli ◽  
Seyed-Milad Bonyad-Shekalgourabi ◽  
Zahra Shariatinia ◽  
Melika Mahmoudi ◽  
...  

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 277
Author(s):  
Miral Al Sharabati ◽  
Rana Sabouni ◽  
Ghaleb A. Husseini

Metal−organic frameworks (MOFs) are a novel class of porous hybrid organic−inorganic materials that have attracted increasing attention over the past decade. MOFs can be used in chemical engineering, materials science, and chemistry applications. Recently, these structures have been thoroughly studied as promising platforms for biomedical applications. Due to their unique physical and chemical properties, they are regarded as promising candidates for disease diagnosis and drug delivery. Their well-defined structure, high porosity, tunable frameworks, wide range of pore shapes, ultrahigh surface area, relatively low toxicity, and easy chemical functionalization have made them the focus of extensive research. This review highlights the up-to-date progress of MOFs as potential platforms for disease diagnosis and drug delivery for a wide range of diseases such as cancer, diabetes, neurological disorders, and ocular diseases. A brief description of the synthesis methods of MOFs is first presented. Various examples of MOF-based sensors and DDSs are introduced for the different diseases. Finally, the challenges and perspectives are discussed to provide context for the future development of MOFs as efficient platforms for disease diagnosis and drug delivery systems.


Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Arya Nair ◽  
Rashmi Mallya ◽  
Vasanti Suvarna ◽  
Tabassum Asif Khan ◽  
Munira Momin ◽  
...  

Microbial pathogens are the most prevalent cause of chronic infections and fatalities around the world. Antimicrobial agents including antibiotics have been frequently utilized in the treatment of infections due to their exceptional outcomes. However, their widespread use has resulted in the emergence of multidrug-resistant strains of bacteria, fungi, viruses, and parasites. Furthermore, due to inherent resistance to antimicrobial drugs and the host defence system, the advent of new infectious diseases, chronic infections, and the occurrence of biofilms pose a tougher challenge to the current treatment line. Essential oils (EOs) and their biologically and structurally diverse constituents provide a distinctive, inexhaustible, and novel source of antibacterial, antiviral, antifungal, and antiparasitic agents. However, due to their volatile nature, chemical susceptibility, and poor solubility, their development as antimicrobials is limited. Nanoparticles composed of biodegradable polymeric and inorganic materials have been studied extensively to overcome these limitations. Nanoparticles are being investigated as nanocarriers for antimicrobial delivery, antimicrobial coatings for food products, implantable devices, and medicinal materials in dressings and packaging materials due to their intrinsic capacity to overcome microbial resistance. Essential oil-loaded nanoparticles may offer the potential benefits of synergism in antimicrobial activity, high loading capacity, increased solubility, decreased volatility, chemical stability, and enhancement of the bioavailability and shelf life of EOs and their constituents. This review focuses on the potentiation of the antimicrobial activity of essential oils and their constituents in nanoparticulate delivery systems for a wide range of applications, such as food preservation, packaging, and alternative treatments for infectious diseases.


Author(s):  
Robert Freer ◽  
Dursun Ekren ◽  
Tanmoy Ghosh ◽  
Kanishka Biswas ◽  
Pengfei Qiu ◽  
...  

Abstract This paper presents tables of key thermoelectric properties, which define thermoelectric conversion efficiency, for a wide range of inorganic materials. The 12 families of materials included in these tables are primarily selected on the basis of well established, internationally-recognised performance and their promise for current and future applications: Tellurides, Skutterudites, Half Heuslers, Zintls, Mg-Sb Antimonides, Clathrates, FeGa3–type materials, Actinides and Lanthanides, Oxides, Sulfides, Selenides, Silicides, Borides and Carbides. As thermoelectric properties vary with temperature, data are presented at room temperature to enable ready comparison, and also at a higher temperature appropriate to peak performance. An individual table of data and commentary are provided for each family of materials plus source references for all the data.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 503
Author(s):  
Hung-Vu Tran ◽  
Nhat M. Ngo ◽  
Riddhiman Medhi ◽  
Pannaree Srinoi ◽  
Tingting Liu ◽  
...  

Due to their good magnetic properties, excellent biocompatibility, and low price, magnetic iron oxide nanoparticles (IONPs) are the most commonly used magnetic nanomaterials and have been extensively explored in biomedical applications. Although magnetic IONPs can be used for a variety of applications in biomedicine, most practical applications require IONP-based platforms that can perform several tasks in parallel. Thus, appropriate engineering and integration of magnetic IONPs with different classes of organic and inorganic materials can produce multifunctional nanoplatforms that can perform several functions simultaneously, allowing their application in a broad spectrum of biomedical fields. This review article summarizes the fabrication of current composite nanoplatforms based on integration of magnetic IONPs with organic dyes, biomolecules (e.g., lipids, DNAs, aptamers, and antibodies), quantum dots, noble metal NPs, and stimuli-responsive polymers. We also highlight the recent technological advances achieved from such integrated multifunctional platforms and their potential use in biomedical applications, including dual-mode imaging for biomolecule detection, targeted drug delivery, photodynamic therapy, chemotherapy, and magnetic hyperthermia therapy.


2022 ◽  
Author(s):  
Bingzhu Zheng ◽  
Jingyue Fan ◽  
Bing Chen ◽  
Xian Qin ◽  
Juan Wang ◽  
...  

Author(s):  
Utkarsh Chadha ◽  
Senthil Kumaran Selvaraj ◽  
S. Vishak Thanu ◽  
Vishnu Cholapadath ◽  
Ashesh Mathew Abraham ◽  
...  

Abstract Water is a necessity for all living and non-living organisms on this planet. It is understood that clean water sources are decreasing by the day, and the rapid rise of Industries and technology has led to an increase in the release of toxic effluents that are discharged into the environment. Wastewater released from Industries, agricultural waste, and municipalities must be treated before releasing into the environment as they contain harmful pollutants such as organic dyes, pharmaceuticals wastes, inorganic materials, and heavy metal ions. If not controlled, they can cause serious risks to human beings' health and contaminate our environment. Membrane filtration is a proven method for the filtration of various harmful chemicals and microbes from water. Carbon nanomaterials are applied in wastewater treatment due to their high surface area, making them efficient adsorbents. Carbon nanomaterials are being developed and utilized in membrane filtration for the treated wastewater before getting discharged with the rise of nanotechnology. This review studies carbon nanomaterials like fullerenes, graphenes, and CNTs incorporated in the membrane filtration to treat wastewater contaminants. We focus on these CNM based membranes and membrane technology, their properties and applications, and how they can enhance the commonly used membrane filtration performance by considering adsorption rate, selectivity, permeability, antimicrobial disinfectant properties, and compatibility with the environment.


Sign in / Sign up

Export Citation Format

Share Document