A Distributed Pi-Calculus

Author(s):  
Matthew Hennessy
Keyword(s):  
2014 ◽  
Vol 36 (6) ◽  
pp. 1261-1266
Author(s):  
Xiang-Ning LI ◽  
Ke-Gang HAO ◽  
Xiao-Qun GUO
Keyword(s):  

Network ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 75-94
Author(s):  
Ed Kamya Kiyemba Edris ◽  
Mahdi Aiash ◽  
Jonathan Loo

Fifth Generation mobile networks (5G) promise to make network services provided by various Service Providers (SP) such as Mobile Network Operators (MNOs) and third-party SPs accessible from anywhere by the end-users through their User Equipment (UE). These services will be pushed closer to the edge for quick, seamless, and secure access. After being granted access to a service, the end-user will be able to cache and share data with other users. However, security measures should be in place for SP not only to secure the provisioning and access of those services but also, should be able to restrict what the end-users can do with the accessed data in or out of coverage. This can be facilitated by federated service authorization and access control mechanisms that restrict the caching and sharing of data accessed by the UE in different security domains. In this paper, we propose a Data Caching and Sharing Security (DCSS) protocol that leverages federated authorization to provide secure caching and sharing of data from multiple SPs in multiple security domains. We formally verify the proposed DCSS protocol using ProVerif and applied pi-calculus. Furthermore, a comprehensive security analysis of the security properties of the proposed DCSS protocol is conducted.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1608
Author(s):  
Ed Kamya Kiyemba Edris ◽  
Mahdi Aiash ◽  
Jonathan Loo

Device-to-Device (D2D) communications will be used as an underlay technology in the Fifth Generation mobile network (5G), which will make network services of multiple Service Providers (SP) available anywhere. The end users will be allowed to access and share services using their User Equipments (UEs), and thus they will require seamless and secured connectivity. At the same time, Mobile Network Operators (MNOs) will use the UE to offload traffic and push contents closer to users relying on D2D communications network. This raises security concerns at different levels of the system architecture and highlights the need for robust authentication and authorization mechanisms to provide secure services access and sharing between D2D users. Therefore, this paper proposes a D2D level security solution that comprises two security protocols, namely, the D2D Service security (DDSec) and the D2D Attributes and Capability security (DDACap) protocols, to provide security for access, caching and sharing data in network-assisted and non-network-assisted D2D communications scenarios. The proposed solution applies Identity-based Encryption (IBE), Elliptic Curve Integrated Encryption Scheme (ECIES) and access control mechanisms for authentication and authorization procedures. We formally verified the proposed protocols using ProVerif and applied pi calculus. We also conducted a security analysis of the proposed protocols.


2010 ◽  
Vol 411 (22-24) ◽  
pp. 2223-2238 ◽  
Author(s):  
Kohei Honda ◽  
Olivier Laurent
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document