scholarly journals 846. A verification in regard to the linear transformation of the theta-functions

2011 ◽  
pp. 337-343
Author(s):  
Arthur Cayley
2021 ◽  
Vol 111 (2) ◽  
Author(s):  
E. V. Ferapontov ◽  
M. V. Pavlov ◽  
Lingling Xue

AbstractWe investigate the integrability of Euler–Lagrange equations associated with 2D second-order Lagrangians of the form $$\begin{aligned} \int f(u_{xx},u_{xy},u_{yy})\ \mathrm{d}x\mathrm{d}y. \end{aligned}$$ ∫ f ( u xx , u xy , u yy ) d x d y . By deriving integrability conditions for the Lagrangian density f, examples of integrable Lagrangians expressible via elementary functions, Jacobi theta functions and dilogarithms are constructed. A link of second-order integrable Lagrangians to WDVV equations is established. Generalisations to 3D second-order integrable Lagrangians are also discussed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Joshua Males ◽  
Andreas Mono ◽  
Larry Rolen

Abstract In the theory of harmonic Maaß forms and mock modular forms, mock theta functions are distinguished examples which arose from q-hypergeometric examples of Ramanujan. Recently, there has been a body of work on higher depth mock modular forms. Here, we introduce distinguished examples of these forms, which we call higher depth mock theta functions, and develop q-hypergeometric expressions for them. We provide three examples of mock theta functions of depth two, each arising by multiplying a classical mock theta function with a certain specialization of a universal mock theta function. In addition, we give their modular completions, and relate each to a q-hypergeometric series.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 45
Author(s):  
Fanwen Meng ◽  
Jacqueline Jonklaas ◽  
Melvin Khee-Shing Leow

Clinicians often encounter thyroid function tests (TFT) comprising serum/plasma free thyroxine (FT4) and thyroid stimulating hormone (TSH) measured using different assay platforms during the course of follow-up evaluations which complicates reliable comparison and interpretation of TFT changes. Although interconversion between concentration units is straightforward, the validity of interconversion of FT4/TSH values from one assay platform to another with different reference intervals remains questionable. This study aims to establish an accurate and reliable methodology of interconverting FT4 by any laboratory to an equivalent FT4 value scaled to a reference range of interest via linear transformation methods. As a proof-of-concept, FT4 was simultaneously assayed by direct analog immunoassay, tandem mass spectrometry and equilibrium dialysis. Both linear and piecewise linear transformations proved relatively accurate for FT4 inter-scale conversion. Linear transformation performs better when FT4 are converted from a more accurate to a less accurate assay platform. The converse is true, whereby piecewise linear transformation is superior to linear transformation when converting values from a less accurate method to a more robust assay platform. Such transformations can potentially apply to other biochemical analytes scale conversions, including TSH. This aids interpretation of TFT trends while monitoring the treatment of patients with thyroid disorders.


Sign in / Sign up

Export Citation Format

Share Document