The final stages of stellar evolution: white dwarfs, brown dwarfs, neutron stars and black holes

The Stars ◽  
1994 ◽  
pp. 207-219
Author(s):  
Nils Andersson

This chapter introduces the different classes of compact objects—white dwarfs, neutron stars, and black holes—that are relevant for gravitational-wave astronomy. The ideas are placed in the context of developing an understanding of the likely endpoint(s) of stellar evolution. Key ideas like Fermi gases and the Chandrasekhar mass are discussed, as is the emergence of general relativity as a cornerstone of astrophysics in the 1950s. Issues associated with different formation channels for, in particular, black holes are considered. The chapter ends with a discussion of the supermassive black holes that are found at the centre of galaxies.


2019 ◽  
Vol 15 (S357) ◽  
pp. 206-210
Author(s):  
Bhusan Kayastha ◽  
Long Wang ◽  
Peter Berczik ◽  
Xiaoying Pang ◽  
Manuel Arca Sedda ◽  
...  

AbstractWe present some results from the DRAGON simulations, a set of four direct N-body simulations of globular clusters (GCs) with a million stars and five percent initial (primordial) binaries. These simulations were undertaken with the NBODY6++GPU code, which allowed us to follow dynamical and stellar evolution of individual stars and binaries, formation and evolution of white dwarfs, neutron stars, and black holes, and the effect of a galactic tidal field. The simulations are the largest existing models of a realistic globular cluster over its full lifetime of 12 billion years. In particular we will show here an investigation of the population of binaries including compact objects (such as white dwarfs - cataclysmic variables and merging black hole binaries in the model as counterparts of LIGO/Virgo sources); their distribution in the cluster and evolution with time.


2005 ◽  
Vol 192 ◽  
pp. 263-268
Author(s):  
V.V. Tikhomirov ◽  
S.E. Yuralevich

SummaryPrimordial black holes (PBHs) of microscopical size can completely absorb neutron stars (NSs) and white dwarfs (WDs) for less than the Hubble time. NS absorption is accompanied by inverse URCA process giving rise to emission of antineutrino. However considerable part of these antineutrino fails to escape NS being drawn into the growing black hole by accreting NS matter. The final stage of dense WD absorption is accompanied by 1051 erg neutrino burst able to ignite nuclear burning giving rise to supernova-like WD explosion.


Science ◽  
1971 ◽  
Vol 171 (3975) ◽  
pp. 994-995
Author(s):  
A. L. Hammond

2011 ◽  
Vol 20 (10) ◽  
pp. 1797-1872 ◽  
Author(s):  
REMO RUFFINI

Gamma-ray bursts (GRBs) and supernovae (SNe) bring new perspectives to the study of neutron stars and white dwarfs, as well as opening new branches of theoretical physics and astrophysics.


Sign in / Sign up

Export Citation Format

Share Document