scholarly journals FUNDAMENTAL PHYSICS FROM BLACK HOLES, NEUTRON STARS AND GAMMA-RAY BURSTS

2011 ◽  
Vol 20 (10) ◽  
pp. 1797-1872 ◽  
Author(s):  
REMO RUFFINI

Gamma-ray bursts (GRBs) and supernovae (SNe) bring new perspectives to the study of neutron stars and white dwarfs, as well as opening new branches of theoretical physics and astrophysics.

2021 ◽  
Vol 922 (1) ◽  
pp. L15
Author(s):  
Shigeo S. Kimura ◽  
Kazumi Kashiyama ◽  
Kenta Hotokezaka

Abstract We discuss the prospects for identifying the nearest isolated black holes (IBHs) in our Galaxy. IBHs accreting gas from the interstellar medium likely form magnetically arrested disks (MADs). We show that thermal electrons in the MADs emit optical signals through the thermal synchrotron process while nonthermal electrons accelerated via magnetic reconnections emit a flat-spectrum synchrotron radiation in the X-ray to MeV gamma-ray ranges. The Gaia catalog will include at most a thousand IBHs within ≲1 kpc that are distributed on and around the cooling sequence of white dwarfs (WDs) in the Hertzsprung–Russell diagram. These IBH candidates should also be detected by eROSITA, with which they can be distinguished from isolated WDs and neutron stars. Follow-up observations with hard X-ray and MeV gamma-ray satellites will be useful to unambiguously identify IBHs.


2008 ◽  
Vol 680 (2) ◽  
pp. L129-L132 ◽  
Author(s):  
K. Belczynski ◽  
R. O'Shaughnessy ◽  
V. Kalogera ◽  
F. Rasio ◽  
R. E. Taam ◽  
...  

2014 ◽  
Vol 10 (S313) ◽  
pp. 398-399
Author(s):  
Antonio de Ugarte Postigo ◽  
Christina C. Thöne ◽  
Antonia Rowllinson ◽  
Rubén García Benito ◽  
Andrew J. Levan ◽  
...  

AbstractShort gamma-ray bursts (GRBs) are an extremely elusive family of cosmic explosions. They are thought to be related to the violent merger of compact objects (such as a neutron stars or black holes). Their optical counterparts were not discovered until 2005, and since then, there had been no successful spectroscopic observations. Here we present the first spectra of a short GRB, which we use to study the environment and derive implications on the progenitors of these cosmic explosions. This poster is based on the work by de Ugarte Postigoet al. (2014).


2005 ◽  
Vol 192 ◽  
pp. 543-553
Author(s):  
Abraham Loeb

SummaryGamma-Ray Bursts (GRBs) are believed to originate in compact remnants (black holes or neutron stars) of massive stars. Their high luminosities make them detectable out to the edge of the visible universe. We describe the many advantages of GRB afterglows relative to quasars as probes of the intergalactic medium during the epoch of reionization. The Swift satellite, planned for launch by the end of 2004, will likely open a new era in observations of the high redshift universe.


2018 ◽  
Vol 14 (S346) ◽  
pp. 380-382
Author(s):  
Levente Borvák ◽  
Attila Mészáros ◽  
Jakub Řípa

AbstractIt is well-known that there are two types of gamma-ray bursts (GRBs): short/hard and long/soft ones, respectively. The long GRBs are coupled to supernovae, but the short ones are associated with the so called macronovae (also known as kilonovae), which can serve as the sources of gravitational waves as well. The kilonovae can arise from the merging of two neutron-stars. The neutron stars can be substituded by more massive black holes as well. Hence, the topic of gamma-ray bursts (mainly the topic of short ones) and the topic of massive binaries, are strongly connected.In this contribution, the redshifts of GRBs are studied. The surprising result - namely that the apparently fainter GRBs can be in average at smaller distances - is discussed again. In essence, the results of Mészáros et al. (2011) are studied again using newer samples of GRBs. The former result is confirmed by the newer data.


2000 ◽  
Vol 195 ◽  
pp. 339-346
Author(s):  
C. L. Fryer

Accretion disks around stellar-mass black holes are now thought to be the engines which power classical gamma-ray bursts (GRBs). These disks are formed almost exclusively in binaries, and to study the characteristics of the progenitors of these black-hole accretion disk (BHAD) GRBs, we must understand the uncertainties in binary population synthesis calculations. Kicks imparted onto nascent neutron stars and black holes are among the most misunderstood concepts of binary population synthesis. In this paper, we outline the current understanding (or lack of understanding) of these kicks and discuss their effect on BHAD GRBs and binary population synthesis as a whole.


2018 ◽  
Vol 14 (S346) ◽  
pp. 383-387
Author(s):  
Attila Mészáros ◽  
Jakub Řípa

AbstractThe separation of the gamma-ray bursts (GRBs) into short/hard and long/soft subclasses, respectively, is well supported both theoretically and observationally. The long ones are coupled to supernovae type Ib/Ic - the short ones are connected to the merging of two neutron stars, where one or even both neutron stars can be substituted by black holes. These short GRBs - as merging binaries - can also serve as the sources of gravitation waves, and are observable as the recently detected macronovae. Since 1998 there are several statistical studies suggesting the existence of more than two subgroups. There can be a subgroup having an intermediate durations; there can be a subgroup with ultra-long durations; the long/soft subgroup itself can be divided into two subclasses with respect to the luminosity of GRBs. The authors with other collaborators provided several statistical studies in this topic. This field of the GRB-diversity is briefly surveyed in this contribution.


1976 ◽  
Vol 39 (1) ◽  
pp. 243-249 ◽  
Author(s):  
Ju. M. Bruk ◽  
K. I. Kugel

Sign in / Sign up

Export Citation Format

Share Document