On conjugations of circle homeomorphisms with two break points
2012 ◽
Vol 34
(3)
◽
pp. 725-741
◽
Keyword(s):
AbstractLetfi∈C2+α(S1∖{ai,bi}),α>0,i=1,2, be circle homeomorphisms with two break pointsai,bi, that is, discontinuities in the derivativeDfi, with identical irrational rotation numberρandμ1([a1,b1])=μ2([a2,b2]), whereμiare the invariant measures offi,i=1,2. Suppose that the products of the jump ratios ofDf1andDf2do not coincide, that is,Df1(a1−0)/Df1(a1+0)⋅Df1(b1−0)/Df1(b1+0)≠Df2(a2−0)/Df2(a2+0)⋅Df2(b2−0)/Df2(b2+0) . Then the mapψconjugatingf1andf2is a singular function, that is, it is continuous onS1, butDψ(x)=0 almost everywhere with respect to Lebesgue measure.
2015 ◽
Vol 36
(8)
◽
pp. 2351-2383
◽
2016 ◽
Vol 38
(1)
◽
pp. 371-383
◽
2021 ◽
pp. 287-300
2012 ◽
Vol 34
(2)
◽
pp. 423-456
◽
2014 ◽
Vol 24
(01)
◽
pp. 1450012
◽
1985 ◽
Vol 5
(1)
◽
pp. 27-46
◽
Keyword(s):
2011 ◽
Vol 153
(1)
◽
pp. 59-77
◽
2012 ◽
Vol 274
(1-2)
◽
pp. 315-321
◽