Singular measures for classP-circle homeomorphisms with several break points
AbstractLetfbe a classP-homeomorphism of the circle with break point singularities, that is, differentiable except at some singular points where the derivative has a jump. Letfhave irrational rotation number andDfbe absolutely continuous on every continuity interval ofDf. We prove that if the product of thef-jumps along any subset of break points is distinct from 1 then the invariant measureμfis singular with respect to the Haar measure. This result generalizes previous results obtained by Dzhalilov and Khanin, Dzhalilov, Akhadkulov, Dzhalilov–Liousse and Mayer. Moreover, we prove that if the rotation numberρ(f) is irrational of bounded type then (a) if the product of thef-jumps on some orbit is distinct from 1 then the invariant measureμfis singular with respect to the Haar measurem, and (b) if the product of thef-jumps on each orbit is equal to 1 andD2f∈Lp(S1) for somep>1 thenμfis equivalent to the Haar measure.