scholarly journals Graph covers and ergodicity for zero-dimensional systems

2014 ◽  
Vol 36 (2) ◽  
pp. 608-631 ◽  
Author(s):  
TAKASHI SHIMOMURA

Bratteli–Vershik systems have been widely studied. In the context of general zero-dimensional systems, Bratteli–Vershik systems are homeomorphisms that have Kakutani–Rohlin refinements. Bratteli diagrams are well suited to analyzing such systems. Besides this approach, general graph covers can be used to represent any zero-dimensional system. Indeed, all zero-dimensional systems can be described as certain kinds of sequences of graph covers that may not be brought about by Kakutani–Rohlin partitions. In this paper, we follow the context of general graph covers to analyze the relations between ergodic measures and circuits of graph covers. First, we formalize the condition for a sequence of graph covers to represent minimal Cantor systems. In constructing invariant measures, we deal with general compact metrizable zero-dimensional systems. In the context of Bratteli diagrams with finite rank, it has previously been mentioned that all ergodic measures should be limits of some combinations of towers of Kakutani–Rohlin refinements. We demonstrate this for the general zero-dimensional case, and develop a theorem that expresses the coincidence of the time average and the space average for ergodic measures. Additionally, we formulate a theorem that signifies the old relation between uniform convergence and unique ergodicity in the context of graph circuits for general zero-dimensional systems. Unlike previous studies, in our case of general graph covers there arises the possibility of the linear dependence of circuits. We give a condition for a full circuit system to be linearly independent. Previous research also showed that the bounded combinatorics imply unique ergodicity. We present a lemma that enables us to consider unbounded ranks of winding matrices. Finally, we present examples that are linked with a set of simple Bratteli diagrams having the equal path number property.

Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 80
Author(s):  
Sergey Kryzhevich ◽  
Viktor Avrutin ◽  
Nikita Begun ◽  
Dmitrii Rachinskii ◽  
Khosro Tajbakhsh

We studied topological and metric properties of the so-called interval translation maps (ITMs). For these maps, we introduced the maximal invariant measure and demonstrated that an ITM, endowed with such a measure, is metrically conjugated to an interval exchange map (IEM). This allowed us to extend some properties of IEMs (e.g., an estimate of the number of ergodic measures and the minimality of the symbolic model) to ITMs. Further, we proved a version of the closing lemma and studied how the invariant measures depend on the parameters of the system. These results were illustrated by a simple example or a risk management model where interval translation maps appear naturally.


2018 ◽  
Vol 39 (10) ◽  
pp. 2593-2618 ◽  
Author(s):  
OLIVER JENKINSON

Ergodic optimization is the study of problems relating to maximizing orbits and invariant measures, and maximum ergodic averages. An orbit of a dynamical system is called$f$-maximizing if the time average of the real-valued function$f$along the orbit is larger than along all other orbits, and an invariant probability measure is called$f$-maximizing if it gives$f$a larger space average than any other invariant probability measure. In this paper, we consider the main strands of ergodic optimization, beginning with an influential model problem, and the interpretation of ergodic optimization as the zero temperature limit of thermodynamic formalism. We describe typical properties of maximizing measures for various spaces of functions, the key tool of adding a coboundary so as to reveal properties of these measures, as well as certain classes of functions where the maximizing measure is known to be Sturmian.


1998 ◽  
Vol 18 (2) ◽  
pp. 503-507 ◽  
Author(s):  
A. KATOK ◽  
R. J. SPATZIER

The proofs of Theorems 5.1 and 7.1 of [2] contain a gap. We will show below how to close it under some suitable additional assumptions in these theorems and their corollaries. We will assume the notation of [2] throughout. In particular, $\mu$ is a measure invariant and ergodic under an $R^k$-action $\alpha$. Let us first explain the gap. Both theorems are proved by establishing a dichotomy for the conditional measures of $\mu$ along the intersection of suitable stable manifolds. They were either atomic or invariant under suitable translation or unipotent subgroups $U$. Atomicity eventually led to zero entropy. Invariance of the conditional measures showed invariance of $\mu$ under $U$. We then claimed that $\mu$ was algebraic using, respectively, unique ergodicity of the translation subgroup on a rational subtorus or Ratner's theorem (cf. [2, Lemma 5.7]). This conclusion, however, only holds for the $U$-ergodic components of $\mu$ which may not equal $\mu$. In fact, in the toral case, the $R^k$-action may have a zero-entropy factor such that the conditional measures along the fibers are Haar measures along a foliation by rational subtori. Since invariant measures with zero entropy have not been classified, we cannot conclude algebraicity of the total measure $\mu$ at this time. In the toral case, the existence of zero entropy factors turns out to be precisely the obstruction to our methods. The case of Weyl chamber flows is somewhat different as the ‘Haar’ direction of the measure may not be integrable. In this case, we need to use additional information coming from the semisimplicity of the ambient Lie group to arrive at the versions of Theorem 7.1 presented below.


2009 ◽  
Vol 30 (4) ◽  
pp. 973-1007 ◽  
Author(s):  
S. BEZUGLYI ◽  
J. KWIATKOWSKI ◽  
K. MEDYNETS ◽  
B. SOLOMYAK

AbstractWe study dynamical systems acting on the path space of a stationary (non-simple) Bratteli diagram. For such systems we give an explicit description of all ergodic probability measures that are invariant with respect to the tail equivalence relation (or the Vershik map); these measures are completely described by the incidence matrix of the Bratteli diagram. Since such diagrams correspond to substitution dynamical systems, our description provides an algorithm for finding invariant probability measures for aperiodic non-minimal substitution systems. Several corollaries of these results are obtained. In particular, we show that the invariant measures are not mixing and give a criterion for a complex number to be an eigenvalue for the Vershik map.


1996 ◽  
Vol 16 (4) ◽  
pp. 751-778 ◽  
Author(s):  
A. Katok ◽  
R. J. Spatzier

AbstractWe investigate invariant ergodic measures for certain partially hyperbolic and Anosov actions of ℝk, ℤkandWe show that they are either Haar measures or that every element of the action has zero metric entropy.


2016 ◽  
Vol 37 (8) ◽  
pp. 2417-2452 ◽  
Author(s):  
M. ADAMSKA ◽  
S. BEZUGLYI ◽  
O. KARPEL ◽  
J. KWIATKOWSKI

We study ergodic finite and infinite measures defined on the path space $X_{B}$ of a Bratteli diagram $B$ which are invariant with respect to the tail equivalence relation on $X_{B}$. Our interest is focused on measures supported by vertex and edge subdiagrams of $B$. We give several criteria when a finite invariant measure defined on the path space of a subdiagram of $B$ extends to a finite invariant measure on $B$. Given a finite ergodic measure on a Bratteli diagram $B$ and a subdiagram $B^{\prime }$ of $B$, we find the necessary and sufficient conditions under which the measure of the path space $X_{B^{\prime }}$ of $B^{\prime }$ is positive. For a class of Bratteli diagrams of finite rank, we determine when they have maximal possible number of ergodic invariant measures. The case of diagrams of rank two is completely studied. We also include an example which explicitly illustrates the proven results.


Author(s):  
William Moran

AbstractRiesz products are employed to give a construction of quasi-invariant ergodic measures under the irrational rotation of T. By suitable choice of the parameters such measures may be required to have Fourier-Stieltjes coefficients vanishing at infinity. We show further that these are the unique quasi-invariant measures on T with their associated Radon-Nikodym derivative.


Sign in / Sign up

Export Citation Format

Share Document