Corrections to ‘Invariant measures for higher-rank hyperbolic abelian actions’

1998 ◽  
Vol 18 (2) ◽  
pp. 503-507 ◽  
Author(s):  
A. KATOK ◽  
R. J. SPATZIER

The proofs of Theorems 5.1 and 7.1 of [2] contain a gap. We will show below how to close it under some suitable additional assumptions in these theorems and their corollaries. We will assume the notation of [2] throughout. In particular, $\mu$ is a measure invariant and ergodic under an $R^k$-action $\alpha$. Let us first explain the gap. Both theorems are proved by establishing a dichotomy for the conditional measures of $\mu$ along the intersection of suitable stable manifolds. They were either atomic or invariant under suitable translation or unipotent subgroups $U$. Atomicity eventually led to zero entropy. Invariance of the conditional measures showed invariance of $\mu$ under $U$. We then claimed that $\mu$ was algebraic using, respectively, unique ergodicity of the translation subgroup on a rational subtorus or Ratner's theorem (cf. [2, Lemma 5.7]). This conclusion, however, only holds for the $U$-ergodic components of $\mu$ which may not equal $\mu$. In fact, in the toral case, the $R^k$-action may have a zero-entropy factor such that the conditional measures along the fibers are Haar measures along a foliation by rational subtori. Since invariant measures with zero entropy have not been classified, we cannot conclude algebraicity of the total measure $\mu$ at this time. In the toral case, the existence of zero entropy factors turns out to be precisely the obstruction to our methods. The case of Weyl chamber flows is somewhat different as the ‘Haar’ direction of the measure may not be integrable. In this case, we need to use additional information coming from the semisimplicity of the ambient Lie group to arrive at the versions of Theorem 7.1 presented below.

2018 ◽  
Vol 2019 (19) ◽  
pp. 6036-6088
Author(s):  
Hee Oh ◽  
Wenyu Pan

Abstract Abelian covers of hyperbolic three-manifolds are ubiquitous. We prove the local mixing theorem of the frame flow for abelian covers of closed hyperbolic three-manifolds. We obtain a classification theorem for measures invariant under the horospherical subgroup. We also describe applications to the prime geodesic theorem as well as to other counting and equidistribution problems. Our results are proved for any abelian cover of a homogeneous space Γ0∖G where G is a rank one simple Lie group and Γ0 < G is a convex cocompact Zariski dense subgroup.


2000 ◽  
Vol 20 (1) ◽  
pp. 259-288 ◽  
Author(s):  
ANATOLE KATOK ◽  
VIOREL NIŢICĂ ◽  
ANDREI TÖRÖK

We develop a new technique for calculating the first cohomology of certain classes of actions of higher-rank abelian groups (${\mathbb Z}^k$ and ${\mathbb R}^k$, $k\ge 2$) with values in a linear Lie group. In this paper we consider the discrete-time case. Our results apply to cocycles of different regularity, from Hölder to smooth and real-analytic. The main conclusion is that the corresponding cohomology trivializes, i.e. that any cocycle from a given class is cohomologous to a constant cocycle. The principal novel feature of our method is its geometric character; no global information about the action based on harmonic analysis is used. The method can be developed to apply to cocycles with values in certain infinite dimensional groups and to rigidity problems.


2009 ◽  
Vol 30 (3) ◽  
pp. 923-930 ◽  
Author(s):  
PENG SUN

AbstractIn this paper, we study some skew product diffeomorphisms with non-uniformly hyperbolic structure along fibers and show that there is an invariant measure with zero entropy which has atomic conditional measures along fibers. For such diffeomorphisms, our result gives an affirmative answer to the question posed by Herman as to whether a smooth diffeomorphism of positive topological entropy would fail to be uniquely ergodic. The proof is based on some techniques that are analogous to those developed by Pesin and Katok, together with an investigation of certain combinatorial properties of the projected return map on the base.


2021 ◽  
Vol 25 (24) ◽  
pp. 732-747
Author(s):  
Mladen Božičević

Let G R G_\mathbb R be a real form of a complex, semisimple Lie group G G . Assume G R G_\mathbb R has holomorphic discrete series. Let W \mathcal W be a nilpotent coadjoint G R G_\mathbb R -orbit contained in the wave front set of a holomorphic discrete series. We prove a limit formula, expressing the canonical measure on W \mathcal W as a limit of canonical measures on semisimple coadjoint orbits, where the parameter of orbits varies over the positive chamber defined by the Borel subalgebra associated with holomorphic discrete series.


1996 ◽  
Vol 16 (4) ◽  
pp. 751-778 ◽  
Author(s):  
A. Katok ◽  
R. J. Spatzier

AbstractWe investigate invariant ergodic measures for certain partially hyperbolic and Anosov actions of ℝk, ℤkandWe show that they are either Haar measures or that every element of the action has zero metric entropy.


1989 ◽  
Vol 105 (2) ◽  
pp. 249-252 ◽  
Author(s):  
H. D. Fegan ◽  
B. Steer

Suppose that G is a semi-simple, compact, connected Lie group. Endow g, its Lie algebra, with the inner product which is the negative of the Killing form. Choose a fundamental Weyl Chamber and let R+ denote the positive roots so determined.


1979 ◽  
Vol 167 (2) ◽  
pp. 169-172 ◽  
Author(s):  
Klaus Schmidt

Sign in / Sign up

Export Citation Format

Share Document