scholarly journals Decompositions and measures on countable Borel equivalence relations

2020 ◽  
pp. 1-33
Author(s):  
RUIYUAN CHEN

Abstract We show that the uniform measure-theoretic ergodic decomposition of a countable Borel equivalence relation $(X, E)$ may be realized as the topological ergodic decomposition of a continuous action of a countable group $\Gamma \curvearrowright X$ generating E. We then apply this to the study of the cardinal algebra $\mathcal {K}(E)$ of equidecomposition types of Borel sets with respect to a compressible countable Borel equivalence relation $(X, E)$ . We also make some general observations regarding quotient topologies on topological ergodic decompositions, with an application to weak equivalence of measure-preserving actions.

1993 ◽  
Vol 58 (3) ◽  
pp. 894-907 ◽  
Author(s):  
Alexander S. Kechris

LetXbe a standard Borel space (i.e., a Polish space with the associated Borel structure), and letEbe acountableBorel equivalence relation onX, i.e., a Borel equivalence relationEfor which every equivalence class [x]Eis countable. By a result of Feldman-Moore [FM],Eis induced by the orbits of a Borel action of a countable groupGonX.The structure of general countable Borel equivalence relations is very little understood. However, a lot is known for the particularly important subclass consisting of hyperfinite relations. A countable Borel equivalence relation is calledhyperfiniteif it is induced by a Borel ℤ-action, i.e., by the orbits of a single Borel automorphism. Such relations are studied and classified in [DJK] (see also the references contained therein). It is shown in Ornstein-Weiss [OW] and Connes-Feldman-Weiss [CFW] that for every Borel equivalence relationEinduced by a Borel action of a countable amenable groupGonXand for every (Borel) probability measure μ onX, there is a Borel invariant setY⊆Xwith μ(Y) = 1 such thatE↾Y(= the restriction ofEtoY) is hyperfinite. (Recall that a countable group G isamenableif it carries a finitely additive translation invariant probability measure defined on all its subsets.) Motivated by this result, Weiss [W2] raised the question of whether everyEinduced by a Borel action of a countable amenable group is hyperfinite. Later on Weiss (personal communication) showed that this is true forG= ℤn. However, the problem is still open even for abelianG. Our main purpose here is to provide a weaker affirmative answer for general amenableG(and more—see below). We need a definition first. Given two standard Borel spacesX, Y, auniversally measurableisomorphism betweenXandYis a bijection ƒ:X→Ysuch that both ƒ, ƒ-1are universally measurable. (As usual, a mapg:Z→W, withZandWstandard Borel spaces, is calleduniversally measurableif it is μ-measurable for every probability measure μ onZ.) Notice now that to assert that a countable Borel equivalence relation onXis hyperfinite is trivially equivalent to saying that there is a standard Borel spaceYand a hyperfinite Borel equivalence relationFonY, which isBorelisomorphic toE, i.e., there is a Borel bijection ƒ:X→YwithxEy⇔ ƒ(x)Fƒ(y). We have the following theorem.


2017 ◽  
Vol 17 (01) ◽  
pp. 1750003
Author(s):  
Andrew S. Marks

We prove a number of results motivated by global questions of uniformity in computabi- lity theory, and universality of countable Borel equivalence relations. Our main technical tool is a game for constructing functions on free products of countable groups. We begin by investigating the notion of uniform universality, first proposed by Montalbán, Reimann and Slaman. This notion is a strengthened form of a countable Borel equivalence relation being universal, which we conjecture is equivalent to the usual notion. With this additional uniformity hypothesis, we can answer many questions concerning how countable groups, probability measures, the subset relation, and increasing unions interact with universality. For many natural classes of countable Borel equivalence relations, we can also classify exactly which are uniformly universal. We also show the existence of refinements of Martin’s ultrafilter on Turing invariant Borel sets to the invariant Borel sets of equivalence relations that are much finer than Turing equivalence. For example, we construct such an ultrafilter for the orbit equivalence relation of the shift action of the free group on countably many generators. These ultrafilters imply a number of structural properties for these equivalence relations.


2000 ◽  
Vol 65 (4) ◽  
pp. 1881-1894 ◽  
Author(s):  
Sławomir Solecki

AbstractWe show that each non-compact Polish group admits a continuous action on a Polish space with non-smooth orbit equivalence relation. We actually construct a free such action. Thus for a Polish group compactness is equivalent to all continuous free actions of this group being smooth. This answers a question of Kechris. We also establish results relating local compactness of the group with its inability to induce orbit equivalence relations not reducible to countable Borel equivalence relations. Generalizing a result of Hjorth, we prove that each non-locally compact, that is, infinite dimensional, separable Banach space has a continuous action on a Polish space with non-Borel orbit equivalence relation, thus showing that this property characterizes non-local compactness among Banach spaces.


2005 ◽  
Vol 70 (3) ◽  
pp. 979-992 ◽  
Author(s):  
Greg Hjorth

This note answers a questions from [2] by showing that considered up to Borel reducibility, there are more essentially countable Borel equivalence relations than countable Borel equivalence relations. Namely:Theorem 0.1. There is an essentially countable Borel equivalence relation E such that for no countable Borel equivalence relation F (on a standard Borel space) do we haveThe proof of the result is short. It does however require an extensive rear guard campaign to extract from the techniques of [1] the followingMessy Fact 0.2. There are countable Borel equivalence relationssuch that:(i) eachExis defined on a standard Borel probability space (Xx, μx); each Ex is μx-invariant and μx-ergodic;(ii) forx1 ≠ x2 and A μxι -conull, we haveExι/Anot Borel reducible toEx2;(iii) if f: Xx → Xxis a measurable reduction ofExto itself then(iv)is a standard Borel space on which the projection functionis Borel and the equivalence relation Ê given byif and only ifx = x′ andzExz′ is Borel;(V)is Borel.We first prove the theorem granted this messy fact. We then prove the fact.(iv) and (v) are messy and unpleasant to state precisely, but are intended to express the idea that we have an effective parameterization of countable Borel equivalence relations by points in a standard Borel space. Examples along these lines appear already in the Adams-Kechris constructions; the new feature is (iii).Simon Thomas has pointed out to me that in light of theorem 4.4 [5] the Gefter-Golodets examples of section 5 [5] also satisfy the conclusion of 0.2.


2008 ◽  
Vol 73 (4) ◽  
pp. 1271-1277 ◽  
Author(s):  
Greg Hjorth

AbstractThere is an ergodic, measure preserving, countable Borel equivalence relation E on a standard Borel probability space (X, μ) such that E∣c is not essentially free on any conull C ⊂ X.


2005 ◽  
Vol 70 (4) ◽  
pp. 1325-1340 ◽  
Author(s):  
Christian Rosendal

AbstractFamilies of Borel equivalence relations and quasiorders that are cofinal with respect to the Borel reducibility ordering. ≤B, are constructed. There is an analytic ideal on ω generating a complete analytic equivalence relation and any Borel equivalence relation reduces to one generated by a Borel ideal. Several Borel equivalence relations, among them Lipschitz isomorphism of compact metric spaces, are shown to be Kσ complete.


2016 ◽  
Vol 28 (3) ◽  
pp. 448-456 ◽  
Author(s):  
ANDREW MARKS

We show that polynomial time Turing equivalence and a large class of other equivalence relations from computational complexity theory are universal countable Borel equivalence relations. We then discuss ultrafilters on the invariant Borel sets of these equivalence relations which are related to Martin's ultrafilter on the Turing degrees.


2008 ◽  
Vol 73 (4) ◽  
pp. 1328-1340
Author(s):  
Su Gao ◽  
Michael Ray Oliver

In response to a question of Farah, “How many Boolean algebras are there?” [Far04], one of us (Oliver) proved that there are continuum-many nonisomorphic Boolean algebras of the form with I a Borel ideal on the natural numbers, and in fact that this result could be improved simultaneously in two directions:(i) “Borel ideal” may be improved to “analytic P-ideal”(ii) “continuum-many” may be improved to “E0-many”; that is, E0 is Borel reducible to the isomorphism relation on quotients by analytic P-ideals.See [Oli04].In [AdKechOO], Adams and Kechris showed that the relation of equality on Borel sets (and therefore, any Borel equivalence relation whatsoever) is Borel reducible to the equivalence relation of Borel bireducibility. (In somewhat finer terms, they showed that the partial order of inclusion on Borel sets is Borel reducible to the quasi-order of Borel reducibility.) Their technique was to find a collection of, in some sense, strongly mutually ergodic equivalence relations, indexed by reals, and then assign to each Borel set B a sort of “direct sum” of the equivalence relations corresponding to the reals in B. Then if B1, ⊆ B2 it was easy to see that the equivalence relation thus induced by B1 was Borel reducible to the one induced by B2, whereas in the opposite case, taking x to be some element of B / B2, it was possible to show that the equivalence relation corresponding to x, which was part of the equivalence relation induced by B1, was not Borel reducible to the equivalence relation corresponding to B2.


1995 ◽  
Vol 60 (4) ◽  
pp. 1273-1300 ◽  
Author(s):  
Greg Hjorth ◽  
Alexander S. Kechris

Our main goal in this paper is to establish a Glimm-Effros type dichotomy for arbitrary analytic equivalence relations.The original Glimm-Effros dichotomy, established by Effros [Ef], [Ef1], who generalized work of Glimm [G1], asserts that if an Fσ equivalence relation on a Polish space X is induced by the continuous action of a Polish group G on X, then exactly one of the following alternatives holds:(I) Elements of X can be classified up to E-equivalence by “concrete invariants” computable in a reasonably definable way, i.e., there is a Borel function f: X → Y, Y a Polish space, such that xEy ⇔ f(x) = f(y), or else(II) E contains a copy of a canonical equivalence relation which fails to have such a classification, namely the relation xE0y ⇔ ∃n∀m ≥ n(x(n) = y(n)) on the Cantor space 2ω (ω = {0,1,2, …}), i.e., there is a continuous embedding g: 2ω → X such that xE0y ⇔ g(x)Eg(y).Moreover, alternative (II) is equivalent to:(II)′ There exists an E-ergodic, nonatomic probability Borel measure on X, where E-ergodic means that every E-invariant Borel set has measure 0 or 1 and E-nonatomic means that every E-equivalence class has measure 0.


2012 ◽  
Vol 33 (3) ◽  
pp. 777-820 ◽  
Author(s):  
LEWIS BOWEN ◽  
AMOS NEVO

AbstractWe prove pointwise and maximal ergodic theorems for probability-measure-preserving (PMP) actions of any countable group, provided it admits an essentially free, weakly mixing amenable action of stable typeIII$_1$. We show that this class contains all irreducible lattices in connected semi-simple Lie groups without compact factors. We also establish similar results when the stable type isIII$_\lambda $,$0 \lt \lambda \lt 1$, under a suitable hypothesis. Our approach is based on the following two principles. First, we show that it is possible to generalize the ergodic theory of PMP actions of amenable groups to include PMP amenable equivalence relations. Secondly, we show that it is possible to reduce the proof of ergodic theorems for PMP actions of a general group to the proof of ergodic theorems in an associated PMP amenable equivalence relation, provided the group admits an amenable action with the properties stated above.


Sign in / Sign up

Export Citation Format

Share Document