scholarly journals QUASIRANDOM GROUP ACTIONS

2016 ◽  
Vol 4 ◽  
Author(s):  
NICK GILL

Let $G$ be a finite group acting transitively on a set $\unicode[STIX]{x1D6FA}$. We study what it means for this action to be quasirandom, thereby generalizing Gowers’ study of quasirandomness in groups. We connect this notion of quasirandomness to an upper bound for the convolution of functions associated with the action of $G$ on $\unicode[STIX]{x1D6FA}$. This convolution bound allows us to give sufficient conditions such that sets $S\subseteq G$ and $\unicode[STIX]{x1D6E5}_{1},\unicode[STIX]{x1D6E5}_{2}\subseteq \unicode[STIX]{x1D6FA}$ contain elements $s\in S,\unicode[STIX]{x1D714}_{1}\in \unicode[STIX]{x1D6E5}_{1},\unicode[STIX]{x1D714}_{2}\in \unicode[STIX]{x1D6E5}_{2}$ such that $s(\unicode[STIX]{x1D714}_{1})=\unicode[STIX]{x1D714}_{2}$. Other consequences include an analogue of ‘the Gowers trick’ of Nikolov and Pyber for general group actions, a sum-product type theorem for large subsets of a finite field, as well as applications to expanders and to the study of the diameter and width of a finite simple group.

2020 ◽  
Vol 23 (3) ◽  
pp. 447-470
Author(s):  
Nanying Yang ◽  
Mariya A. Grechkoseeva ◽  
Andrey V. Vasil’ev

AbstractWe refer to the set of the orders of elements of a finite group as its spectrum and say that groups are isospectral if their spectra coincide. We prove that, except for one specific case, the solvable radical of a nonsolvable finite group isospectral to a finite simple group is nilpotent.


1968 ◽  
Vol 20 ◽  
pp. 1300-1307 ◽  
Author(s):  
Fletcher Gross

A finite group G is said to be a fixed-point-free-group (an FPF-group) if there exists an automorphism a which fixes only the identity element of G. The principal open question in connection with these groups is whether non-solvable FPF-groups exist. One of the results of the present paper is that if a Sylow p-group of the FPF-group G is the direct product of any number of mutually non-isomorphic cyclic groups, then G has a normal p-complement. As a consequence of this, the conjecture that all FPF-groups are solvable would be true if it were true that every finite simple group has a non-trivial SylowT subgroup of the kind just described. Here it should be noted that all the known simple groups satisfy this property.


2020 ◽  
Vol 23 (1) ◽  
pp. 25-78
Author(s):  
Gunter Malle ◽  
Alexandre Zalesski

AbstractLet G be a finite group and, for a prime p, let S be a Sylow p-subgroup of G. A character χ of G is called {\mathrm{Syl}_{p}}-regular if the restriction of χ to S is the character of the regular representation of S. If, in addition, χ vanishes at all elements of order divisible by p, χ is said to be Steinberg-like. For every finite simple group G, we determine all primes p for which G admits a Steinberg-like character, except for alternating groups in characteristic 2. Moreover, we determine all primes for which G has a projective FG-module of dimension {\lvert S\rvert}, where F is an algebraically closed field of characteristic p.


2013 ◽  
Vol 209 ◽  
pp. 35-109 ◽  
Author(s):  
Timothy C. Burness ◽  
Simon Guest

AbstractLet G be a finite group, and let k be a nonnegative integer. We say that G has uniform spread k if there exists a fixed conjugacy class C in G with the property that for any k nontrivial elements x1,…,xk in G there exists y ∊ C such that G = ‹xi,y› for all i. Further, the exact uniform spread of G, denoted by u(G), is the largest k such that G has the uniform spread k property. By a theorem of Breuer, Guralnick, and Kantor, u(G) ≥ 2 for every finite simple group G. Here we consider the uniform spread of almost simple linear groups. Our main theorem states that if G = ‹PSLn (q),g› is almost simple, then u(G) ≥ 2 (unless G ≅ S6), and we determine precisely when u(G) tends to infinity as |G| tends to infinity.


2017 ◽  
Vol 27 (08) ◽  
pp. 1121-1148 ◽  
Author(s):  
Alexander Bors

We call a reduced word [Formula: see text] multiplicity-bounding if and only if a finite group on which the word map of [Formula: see text] has a fiber of positive proportion [Formula: see text] can only contain each non-abelian finite simple group [Formula: see text] as a composition factor with multiplicity bounded in terms of [Formula: see text] and [Formula: see text]. In this paper, based on recent work of Nikolov, we present methods to show that a given reduced word is multiplicity-bounding and apply them to give some nontrivial examples of multiplicity-bounding words, such as words of the form [Formula: see text], where [Formula: see text] is a single variable and [Formula: see text] an odd integer.


2015 ◽  
Vol 14 (04) ◽  
pp. 1550056 ◽  
Author(s):  
Mariya A. Grechkoseeva

By a proper cover of a finite group G we mean an extension of a nontrivial finite group by G. We study element orders in proper covers of a finite simple group L of Lie type and prove that such a cover always contains an element whose order differs from the element orders of L provided that L is not L4(q), U3(q), U4(q), U5(2), or 3D4(2).


Author(s):  
Saul D. Freedman

AbstractLet G be a non-abelian finite simple group. In addition, let $$\Delta _G$$ Δ G be the intersection graph of G, whose vertices are the proper non-trivial subgroups of G, with distinct subgroups joined by an edge if and only if they intersect non-trivially. We prove that the diameter of $$\Delta _G$$ Δ G has a tight upper bound of 5, thereby resolving a question posed by Shen (Czechoslov Math J 60(4):945–950, 2010). Furthermore, a diameter of 5 is achieved only by the baby monster group and certain unitary groups of odd prime dimension.


2019 ◽  
Vol 22 (2) ◽  
pp. 297-312 ◽  
Author(s):  
Victor S. Monakhov ◽  
Alexander A. Trofimuk

AbstractLetGbe a finite group. In this paper we obtain some sufficient conditions for the supersolubility ofGwith two supersoluble non-conjugate subgroupsHandKof prime index, not necessarily distinct. It is established that the supersoluble residual of such a group coincides with the nilpotent residual of the derived subgroup. We prove thatGis supersoluble in the following cases: one of the subgroupsHorKis nilpotent; the derived subgroup{G^{\prime}}ofGis nilpotent;{|G:H|=q>r=|G:K|}andHis normal inG. Also the supersolubility ofGwith two non-conjugate maximal subgroupsMandVis obtained in the following cases: all Sylow subgroups ofMand ofVare seminormal inG; all maximal subgroups ofMand ofVare seminormal inG.


2008 ◽  
Vol 07 (06) ◽  
pp. 735-748 ◽  
Author(s):  
BEHROOZ KHOSRAVI

Let G be a finite group. The prime graph Γ(G) of G is defined as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p, q are joined by an edge if there is an element in G of order pq. It is proved that if p > 11 and p ≢ 1 (mod 12), then PSL(2,p) is uniquely determined by its prime graph. Also it is proved that if p > 7 is a prime number and Γ(G) = Γ(PSL(2,p2)), then G ≅ PSL(2,p2) or G ≅ PSL(2,p2).2, the non-split extension of PSL(2,p2) by ℤ2. In this paper as the main result we determine finite groups G such that Γ(G) = Γ(PSL(2,q)), where q = pk. As a consequence of our results we prove that if q = pk, k > 1 is odd and p is an odd prime number, then PSL(2,q) is uniquely determined by its prime graph and so these groups are characterizable by their prime graph.


2014 ◽  
Vol 22 (2) ◽  
pp. 51-56
Author(s):  
A. S. Argáez

AbstractLet X be projective variety over an algebraically closed field k and G be a finite group with g.c.d.(char(k), |G|) = 1. We prove that any representations of G on a coherent sheaf, ρ : G → End(ℰ), has a natural decomposition ℰ ≃ ⊕ V ⊗k ℱV, where G acts trivially on ℱV and the sum run over all irreducible representations of G over k.


Sign in / Sign up

Export Citation Format

Share Document