scholarly journals EULER SYSTEMS FOR HILBERT MODULAR SURFACES

2018 ◽  
Vol 6 ◽  
Author(s):  
ANTONIO LEI ◽  
DAVID LOEFFLER ◽  
SARAH LIVIA ZERBES

We construct an Euler system—a compatible family of global cohomology classes—for the Galois representations appearing in the geometry of Hilbert modular surfaces. If a conjecture of Bloch and Kato on injectivity of regulator maps holds, this Euler system is nontrivial, and we deduce bounds towards the Iwasawa main conjecture for these Galois representations.


2017 ◽  
Vol 5 ◽  
Author(s):  
MATTHEW EMERTON ◽  
DAVIDE REDUZZI ◽  
LIANG XIAO

Let $p$ be a prime number and $F$ a totally real number field. For each prime $\mathfrak{p}$ of $F$ above $p$ we construct a Hecke operator $T_{\mathfrak{p}}$ acting on $(\text{mod}\,p^{m})$ Katz Hilbert modular classes which agrees with the classical Hecke operator at $\mathfrak{p}$ for global sections that lift to characteristic zero. Using these operators and the techniques of patching complexes of Calegari and Geraghty we prove that the Galois representations arising from torsion Hilbert modular classes of parallel weight $\mathbf{1}$ are unramified at $p$ when $[F:\mathbb{Q}]=2$. Some partial and some conjectural results are obtained when $[F:\mathbb{Q}]>2$.



1982 ◽  
Vol 88 ◽  
pp. 17-53 ◽  
Author(s):  
G. van der Geer ◽  
K. Ueno

Around the beginning of this century G. Humbert ([9]) made a detailed study of the properties of compact complex surfaces which can be parametrized by singular abelian functions. A surface parametrized by singular abelian functions is the image under a holomorphic map of a singular abelian surface (i.e. an abelian surface whose endomorphism ring is larger than the ring of rational integers). Humbert showed that the periods of a singular abelian surface satisfy a quadratic relation with integral coefficients and he constructed an invariant D of such a relation with respect to the action of the integral symplectic group on the periods.



Author(s):  
Matteo Tamiozzo

AbstractThe aim of this paper is to prove inequalities towards instances of the Bloch–Kato conjecture for Hilbert modular forms of parallel weight two, when the order of vanishing of the L-function at the central point is zero or one. We achieve this implementing an inductive Euler system argument which relies on explicit reciprocity laws for cohomology classes constructed using congruences of automorphic forms and special points on several Shimura curves.



2015 ◽  
Vol 3 ◽  
Author(s):  
XIN WAN

Following the ideas and methods of a recent work of Skinner and Urban, we prove the one divisibility of the Iwasawa main conjecture for nearly ordinary Hilbert modular forms under certain local hypotheses. As a consequence, we prove that for a Hilbert modular form of parallel weight, trivial character, and good ordinary reduction at all primes dividing$p$, if the central critical$L$-value is zero then the$p$-adic Selmer group of it has rank at least one. We also prove that one of the local assumptions in the main result of Skinner and Urban can be removed by a base-change trick.



2016 ◽  
Vol 19 (A) ◽  
pp. 29-42 ◽  
Author(s):  
Abhinav Kumar ◽  
Ronen E. Mukamel

We compute equations for real multiplication on the divisor classes of genus-2 curves via algebraic correspondences. We do so by implementing van Wamelen’s method for computing equations for endomorphisms of Jacobians on examples drawn from the algebraic models for Hilbert modular surfaces computed by Elkies and Kumar. We also compute a correspondence over the universal family for the Hilbert modular surface of discriminant $5$ and use our equations to prove a conjecture of A. Wright on dynamics over the moduli space of Riemann surfaces.





1987 ◽  
Vol 89 (2) ◽  
pp. 319-345 ◽  
Author(s):  
V. Kumar Murty ◽  
Dinakar Ramakrishnan




Author(s):  
Friedrich Hirzebruch


Sign in / Sign up

Export Citation Format

Share Document