Control of the secondary cross-flow instability using localized suction

2012 ◽  
Vol 706 ◽  
pp. 470-495 ◽  
Author(s):  
Tillmann Friederich ◽  
Markus J. Kloker

AbstractTransition control by suction in a three-dimensional boundary-layer flow subject to cross-flow instability is investigated using direct numerical simulation. Whereas the classical application of (homogeneous) suction at the wall is aimed at modifying the quasi-two-dimensional base flow to weaken primary cross-flow instability, here the three-dimensional nonlinear disturbance state with large-amplitude steady cross-flow vortices (CFVs) is controlled. Strong, localized ‘pinpoint’ suction is shown to be suitable for altering the CFVs and the associated flow field such that secondary instability is weakened or even completely suppressed. Thus significant delay of transition to turbulence can be achieved.

2002 ◽  
Vol 456 ◽  
pp. 49-84 ◽  
Author(s):  
PETER WASSERMANN ◽  
MARKUS KLOKER

Crossflow-vortex-induced laminar breakdown in a three-dimensional flat-plate boundary-layer flow is investigated in detail by means of spatial direct numerical simulations. The base flow is generic for an infinite swept wing, with decreasing favourable chordwise pressure gradient. First, the downstream growth and nonlinear saturation states initiated by a crossflow-vortex-mode packet as well as by single crossflow-vortex modes with various spanwise wavenumbers are simulated. Second, the secondary instability of the flow induced by the saturated crossflow vortices is scrutinized, clearly indicating the convective nature of the secondary instability and strengthening knowledge of the conditions for its onset. Emphasis is on the effect of crossflow-vortex-mode packets and of the spanwise vortex spacing on the secondary stability properties of the saturation states. Saturated uniform crossflow vortices initiated by single crossflow-vortex modes turn out to be less unstable than vortices initiated by a packet of vortex modes, and closely spaced saturated vortices are even stable. Third, we investigate the transition control strategy of upstream flow deformation by appropriate steady nonlinear vortex modes as applied in wind tunnel experiments at the Arizona State University. A significant transition delay is shown in the base flow considered here, and the underlying mechanisms are specified.


2009 ◽  
Vol 618 ◽  
pp. 209-241 ◽  
Author(s):  
LARS-UVE SCHRADER ◽  
LUCA BRANDT ◽  
DAN S. HENNINGSON

Receptivity in three-dimensional boundary-layer flow to localized surface roughness and free-stream vorticity is studied. A boundary layer of Falkner–Skan–Cooke type with favourable pressure gradient is considered to model the flow slightly downstream of a swept-wing leading edge. In this region, stationary and travelling crossflow instability dominates over other instability types. Three scenarios are investigated: the presence of low-amplitude chordwise localized, spanwise periodic roughness elements on the plate, the impingement of a weak vortical free-stream mode on the boundary layer and the combination of both disturbance sources. Three receptivity mechanisms are identified: steady receptivity to roughness, unsteady receptivity to free-stream vorticity and unsteady receptivity to vortical modes scattered at the roughness. Both roughness and vortical modes provide efficient direct receptivity mechanisms for stationary and travelling crossflow instabilities. We find that stationary crossflow modes dominate for free-stream turbulence below a level of about 0.5%, whereas higher turbulence levels will promote the unsteady receptivity mechanism. Under the assumption of small amplitudes of the roughness and the free-stream disturbance, the unsteady receptivity process due to scattering of free-stream vorticity at the roughness has been found to give small initial disturbance amplitudes in comparison to the direct mechanism for free-stream modes. However, in many environments free-stream vorticity and roughness may excite interacting unstable stationary and travelling crossflow waves. This nonlinear process may rapidly lead to large disturbance amplitudes and promote transition to turbulence.


1993 ◽  
Vol 246 ◽  
pp. 21-41 ◽  
Author(s):  
M. E. Goldstein ◽  
S. J. Leib

We consider the effects of a small-amplitude, steady, streamwise vorticity field on the flow over an infinitely thin flat plate in an otherwise uniform stream. We show how the initially linear perturbation, ultimately leads to a small-amplitude but nonlinear cross-flow far downstream from the leading edge. This motion is imposed on the boundary-layer flow and eventually causes the boundary layer to separate. The streamwise velocity profiles within the boundary layer become inflexional in localized spanwise regions just upstream of the separation point. The flow in these regions is therefore susceptible to rapidly growing inviscid instabilities.


2019 ◽  
Vol 486 (6) ◽  
pp. 668-672
Author(s):  
S. A. Baranov ◽  
A. Ph. Kiselev ◽  
I. A. Moralev ◽  
D. S. Sboev ◽  
S. N. Tolkachev ◽  
...  

The results of an experimental study of the effect of dielectric barrier discharge (DBR) actuator on laminar-turbulent transition in a three-dimensional boundary layer under influence of elevated free-stream turbulence are presented. The travelling cross-flow instability modes are dominated in transition in a base configuration. Their characteristics do not depend on a spanwise position. The DBD-actuator that generated stationary cross-flow vortices with the predefined spanwise wavelength when turned on was capable to reduce a turbulent spots production rate in comparison to the base regime.


2019 ◽  
Vol 64 (9) ◽  
pp. 365-369
Author(s):  
S. A. Baranov ◽  
M. D. Gamirullin ◽  
A. Ph. Kiselev ◽  
A. P. Kuryachii ◽  
D. S. Sboev ◽  
...  

2019 ◽  
Vol 488 (2) ◽  
pp. 147-152
Author(s):  
S. A. Baranov ◽  
M. D. Gamirullin ◽  
A. Ph. Kiselev ◽  
A. P. Kuryachii ◽  
D. S. Sboev ◽  
...  

Results of experiments in low-turbulence subsonic wind tunnel sustaining the possibility of significant attenuation of the cross-flow velocity and the intensity of stationary instability vortices due to the body force impact on three-dimensional boundary layer are presented. The unidirectional body force over a significant area of the streamlined surface has been created with the help of dielectric barrier discharge actuator.


1985 ◽  
Vol 150 ◽  
pp. 329-356 ◽  
Author(s):  
D. I. A. Poll

An experiment has been performed to determine the effect of yaw upon transition in the boundary layer formed on the windward face of a long cylinder. The china-clay-evaporation and surface-oil-flow techniques have been used to study the development of the fixed-wavelength stationary disturbances which are characteristic of cross-flow instability. It has been found that the boundary layer is also susceptible to time-dependent disturbances which grow to very large amplitudes prior to the onset of transition. These disturbances have been studied with a hot-wire anemometer. The conditions necessary for the onset and completion of transition have been determined by the use of surface Pitot tubes. Data from the experiment have been compared with the simple criteria for instability and transition which were proposed by Owen & Randall over thirty years ago. In general it has been found that these criteria are inadequate, and, where possible, improvements have been proposed. The raw data are presented in sufficient detail for them to be used to test, or calibrate, future theoretical models of the transition process in three-dimensional boundary-layer flows.


Sign in / Sign up

Export Citation Format

Share Document