Mechanisms and passive control of crossflow-vortex-induced transition in a three-dimensional boundary layer

2002 ◽  
Vol 456 ◽  
pp. 49-84 ◽  
Author(s):  
PETER WASSERMANN ◽  
MARKUS KLOKER

Crossflow-vortex-induced laminar breakdown in a three-dimensional flat-plate boundary-layer flow is investigated in detail by means of spatial direct numerical simulations. The base flow is generic for an infinite swept wing, with decreasing favourable chordwise pressure gradient. First, the downstream growth and nonlinear saturation states initiated by a crossflow-vortex-mode packet as well as by single crossflow-vortex modes with various spanwise wavenumbers are simulated. Second, the secondary instability of the flow induced by the saturated crossflow vortices is scrutinized, clearly indicating the convective nature of the secondary instability and strengthening knowledge of the conditions for its onset. Emphasis is on the effect of crossflow-vortex-mode packets and of the spanwise vortex spacing on the secondary stability properties of the saturation states. Saturated uniform crossflow vortices initiated by single crossflow-vortex modes turn out to be less unstable than vortices initiated by a packet of vortex modes, and closely spaced saturated vortices are even stable. Third, we investigate the transition control strategy of upstream flow deformation by appropriate steady nonlinear vortex modes as applied in wind tunnel experiments at the Arizona State University. A significant transition delay is shown in the base flow considered here, and the underlying mechanisms are specified.

2012 ◽  
Vol 706 ◽  
pp. 470-495 ◽  
Author(s):  
Tillmann Friederich ◽  
Markus J. Kloker

AbstractTransition control by suction in a three-dimensional boundary-layer flow subject to cross-flow instability is investigated using direct numerical simulation. Whereas the classical application of (homogeneous) suction at the wall is aimed at modifying the quasi-two-dimensional base flow to weaken primary cross-flow instability, here the three-dimensional nonlinear disturbance state with large-amplitude steady cross-flow vortices (CFVs) is controlled. Strong, localized ‘pinpoint’ suction is shown to be suitable for altering the CFVs and the associated flow field such that secondary instability is weakened or even completely suppressed. Thus significant delay of transition to turbulence can be achieved.


1969 ◽  
Vol 91 (4) ◽  
pp. 632-648 ◽  
Author(s):  
T. K. Fannelop ◽  
P. C. Smith

A theoretical analysis is presented for three-dimensional laminar boundary-layer flow about slender conical vehicles including the effect of transverse surface curvature. The boundary-layer equations are solved by standard finite difference techniques. Numerical results are presented for hypersonic flow about a slender blunted cone. The influences of Reynolds number, cone angle, and mass transfer are studied for both symmetric flight and at angle-of-attack. The effects of transverse curvature are substantial at the low Reynolds numbers considered and are enhanced by blowing. The crossflow wall shear is largely unaffected by transverse curvature although the peak velocity is reduced. A simplified “channel flow” analogy is suggested for the crossflow near the wall.


Sign in / Sign up

Export Citation Format

Share Document