scholarly journals Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier–Stokes equation

2013 ◽  
Vol 729 ◽  
pp. 285-308 ◽  
Author(s):  
Maciej J. Balajewicz ◽  
Earl H. Dowell ◽  
Bernd R. Noack

AbstractWe generalize the POD-based Galerkin method for post-transient flow data by incorporating Navier–Stokes equation constraints. In this method, the derived Galerkin expansion minimizes the residual like POD, but with the power balance equation for the resolved turbulent kinetic energy as an additional optimization constraint. Thus, the projection of the Navier–Stokes equation on to the expansion modes yields a Galerkin system that respects the power balance on the attractor. The resulting dynamical system requires no stabilizing eddy-viscosity term – contrary to other POD models of high-Reynolds-number flows. The proposed Galerkin method is illustrated with two test cases: two-dimensional flow inside a square lid-driven cavity and a two-dimensional mixing layer. Generalizations for more Navier–Stokes constraints, e.g. Reynolds equations, can be achieved in straightforward variation of the presented results.

2013 ◽  
Vol 715 ◽  
pp. 359-388 ◽  
Author(s):  
Basile Gallet ◽  
William R. Young

AbstractWe investigate solutions of the two-dimensional Navier–Stokes equation in a $\lrm{\pi} \ensuremath{\times} \lrm{\pi} $ square box with stress-free boundary conditions. The flow is steadily forced by the addition of a source $\sin nx\sin ny$ to the vorticity equation; attention is restricted to even $n$ so that the forcing has zero integral. Numerical solutions with $n= 2$ and $6$ show that at high Reynolds numbers the solution is a domain-scale vortex condensate with a strong projection on the gravest mode, $\sin x\sin y$. The sign of the vortex condensate is selected by a symmetry-breaking instability. We show that the amplitude of the vortex condensate has a finite limit as $\nu \ensuremath{\rightarrow} 0$. Using a quasilinear approximation we make an analytic prediction of the amplitude of the condensate and show that the amplitude is determined by viscous selection of a particular solution from a family of solutions to the forced two-dimensional Euler equation. This theory indicates that the condensate amplitude will depend sensitively on the form of the dissipation, even in the undamped limit. This prediction is verified by considering the addition of a drag term to the Navier–Stokes equation and comparing the quasilinear theory with numerical solution.


1973 ◽  
Vol 59 (2) ◽  
pp. 391-396 ◽  
Author(s):  
N. C. Freeman ◽  
S. Kumar

It is shown that, for a spherically symmetric expansion of a gas into a low pressure, the shock wave with area change region discussed earlier (Freeman & Kumar 1972) can be further divided into two parts. For the Navier–Stokes equation, these are a region in which the asymptotic zero-pressure behaviour predicted by Ladyzhenskii is achieved followed further downstream by a transition to subsonic-type flow. The distance of this final region downstream is of order (pressure)−2/3 × (Reynolds number)−1/3.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Sunggeun Lee ◽  
Shin-Kun Ryi ◽  
Hankwon Lim

We investigate the Navier-Stokes equation in the presence of Coriolis force in this article. First, the vortex equation with the Coriolis effect is discussed. It turns out that the vorticity can be generated due to a rotation coming from the Coriolis effect, Ω. In both steady state and two-dimensional flow, the vorticity vector ω gets shifted by the amount of -2Ω. Second, we consider the specific expression of the velocity vector of the Navier-Stokes equation in two dimensions. For the two-dimensional potential flow v→=∇→ϕ, the equation satisfied by ϕ is independent of Ω. The remaining Navier-Stokes equation reduces to the nonlinear partial differential equations with respect to the velocity and the corresponding exact solution is obtained. Finally, the steady convective diffusion equation is considered for the concentration c and can be solved with the help of Navier-Stokes equation for two-dimensional potential flow. The convective diffusion equation can be solved in three dimensions with a simple choice of c.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012030
Author(s):  
E I Ivashchenko ◽  
M Yu Hrebtov ◽  
R I Mullyadzhanov

Abstract Large-eddy simulations are performed to investigate the cavitating flow around two dimensional hydrofoil section with angle of attack of 9° and high Reynolds number of 1.3×106. We use the Schnerr-Sauer model for accurate phase transitions modelling. Instantaneous velocity fields are compared successfully with PIV data using the methodology of conditional averaging to take into account only the liquid phase characteristics as in PIV. The presence of two frequencies in a spectrum corresponding to the full and partial cavity detachments is analysed.


Sign in / Sign up

Export Citation Format

Share Document