Particle migration in planar die-swell flows

2017 ◽  
Vol 825 ◽  
pp. 49-68 ◽  
Author(s):  
Ivan R. Siqueira ◽  
Márcio S. Carvalho

We present a numerical study on particle migration in a planar extrudate flow of suspensions of non-Brownian hard spheres. The suspension is described as a Newtonian liquid with a concentration-dependent viscosity, and shear-induced particle migration is modelled according to the diffusive flux model. The fully coupled set of nonlinear differential equations governing the flow is solved with a stabilized finite element method together with the elliptic mesh generation method to compute the position of the free surface. We show that shear-induced particle migration inside the channel leads to a highly non-uniform particle concentration distribution under the free surface. It is found that particle migration dramatically changes the shape of the free surface when the suspension is compared to a Newtonian liquid with the same bulk properties. Remarkably, we observed extrudate expansion in the Newtonian and dilute suspension flows; in turn, at high concentrations, a die contraction appears. The model does not account for normal stress differences, and this result is a direct consequence of variations in the flow stress field caused by shear-induced particle migration.

2011 ◽  
Vol 130-134 ◽  
pp. 3628-3631
Author(s):  
L.P. He ◽  
Z.Y. Xia

Dynamic atomization processes of non-Newtonian liquid were investigated by the method of numerical simulation. The full transient process of the primary instability, deformation, and fragmentation of free surface were simulated numerically by solving the Navier-Stokes equations using an algorithm based on the finite volume method. The tracking of the free surface was achieved using the volume of fluid (VOF) technique and the geometric reconstruction was based on the technique of Piecewise-Linear Interface Construction (PLIC). The continuum surface force (CSF) method was used to model surface tension. In this paper, atomization characteristics of non-Newtonian liquid were analyzed detailedly. The distribution of dimensionless potential length against time was obtained, and the dimensionless wavelength of primary waves was investigated.


2002 ◽  
Vol 46 (03) ◽  
pp. 186-200 ◽  
Author(s):  
Pierre C. Sames ◽  
Delphine Marcouly ◽  
Thomas E. Schellin

To validate an existing finite volume computational method, featuring a novel scheme to capture the temporal evolution of the free surface, fluid motions in partially filled tanks were simulated. The purpose was to compare computational and experimental results for test cases where measurements were available. Investigations comprised sloshing in a rectangular tank with a baffle at 60% filling level and in a cylindrical tank at 50% filling level. The numerical study started with examining effects of systematic grid refinement and concluded with examining effects of three-dimensionality and effects of variation of excitation period and amplitude. Predicted time traces of pressures and forces compared favorably with measurements.


Sign in / Sign up

Export Citation Format

Share Document