Separation control and drag reduction for boat-tailed axisymmetric bodies through contoured transverse grooves

2017 ◽  
Vol 832 ◽  
pp. 514-549 ◽  
Author(s):  
A. Mariotti ◽  
G. Buresti ◽  
G. Gaggini ◽  
M. V. Salvetti

We describe the results of a numerical and experimental investigation aimed at assessing the performance of a control method to delay boundary layer separation consisting of the introduction on the surface of contoured transverse grooves, i.e. of small cavities with an appropriate shape orientated transverse to the incoming flow. The shape of the grooves and their depth – which must be significantly smaller than the thickness of the incoming boundary layer – are chosen so that the flow recirculations present within the grooves are steady and stable. This passive control strategy is applied to an axisymmetric bluff body with various rear boat tails, which are characterized by different degrees of flow separation. Variational multiscale large eddy simulations and wind tunnel tests are carried out. The Reynolds number, for both experiments and simulations, is $Re=u_{\infty }D/\unicode[STIX]{x1D708}=9.6\times 10^{4}$; due to the different incoming flow turbulence level, the boundary layer conditions before the boat tails are fully developed turbulent in the experiments and transitional in the simulations. In all cases, the introduction of one single axisymmetric groove in the lateral surface of the boat tails produces significant delay of the boundary layer separation, with consequent reduction of the pressure drag. Nonetheless, the wake dynamical structure remains qualitatively similar to the one typical of a blunt-based axisymmetric body, with quantitative variations that are consistent with the reduction in wake width caused by boat tailing and by the grooves. A few supplementary simulations show that the effect of the grooves is also robust to the variation of the geometrical parameters defining their shape. All the obtained data support the interpretation that the relaxation of the no-slip boundary condition for the flow surrounding the recirculation regions, with an appreciable velocity along their borders, is the physical mechanism responsible for the effectiveness of the present separation-control method.

Author(s):  
Edward Canepa ◽  
Davide Lengani ◽  
Francesca Satta ◽  
Ennio Spano ◽  
Marina Ubaldi ◽  
...  

The continuous tendency in modern aeroengine gas turbines towards reduction of blade count and ducts length may lead to aerodynamic loading increase beyond the limit of boundary layer separation. For this reason boundary layer separation control methods, up to now mostly employed in external aerodynamics, begin to be experimented in internal flows applications. The present paper reports the results of a detailed experimental study on low profile vortex generators used to control boundary layer separation on a large-scale flat plate with prescribed adverse pressure gradients. Inlet turbulent boundary layer conditions and pressure gradients are representative of aggressive turbine intermediate ducts. This activity is part of a joint European research program on Aggressive Intermediate Duct Aerodynamics (AIDA). The pressure gradients on the flat plate are generated by increasing the aperture angle of a movable wall opposite to the flat plate. To avoid separation on the movable wall, boundary layer suction is applied on it. Complementary measurements (surface static pressure distributions, surface flow visualizations by means of wall mounted tufts, instantaneous and time-averaged velocity fields in the meridional and cross-stream planes by means of Particle Image Velocimetry) have been used to survey the flow with and without vortex generators. Three different pressure gradients, which induce turbulent separation in absence of boundary layer control, were tested. Vortex generators height and location effects on separation reduction and pressure recovery increase were investigated. For the most effective VGs configurations detailed analyses of the flow field were performed, that demonstrate the effectiveness of this passive control device to control separation in diffusing ducts. Particle Image Velocimetry vector and vorticity plots illustrate the mechanisms by which the vortex generators transfer momentum towards the surface, re-energizing the near-wall flow and preserving the boundary layer from separation.


Sign in / Sign up

Export Citation Format

Share Document