incoming flow
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 78)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Vol 933 ◽  
Author(s):  
Kamlesh Joshi ◽  
Samik Bhattacharya

The unsteady force response of an accelerating flat plate, subjected to controlled spanwise bending, is investigated experimentally. The flat plate was held normal to the flow (at an angle of attack of $90^{\circ }$ ), and it was dynamically bent along the spanwise direction with the help of internal actuation. Two bending directions were tested. In one case, part of the plate (denoted by flexion ratio) was bent into the incoming flow (the bend-down configuration). In another case, the plate was bent away from the flow (the bend-up configuration). We used two different aspect ratio ( $AR$ ) plates, namely $AR = 2$ and 3. Three acceleration numbers, namely $A_c = 0.57$ , 1.6 and 3.2 (corresponding to dimensional acceleration of 0.036, 0.1 and 0.2 m s $^{-2}$ , respectively) were tested with a fixed terminal Reynolds number (Re) of 18 000. For each acceleration number, three bending durations, namely 1.2, 2.4 and 3.6 s were implemented. The results indicate that the highest impulse was imparted by the highest bending rate (duration 1.2 s) during all three accelerations tested. We show that controlled spanwise bending can significantly change the unsteady force response by manipulating the inertial forces during a start-up manoeuvre. The unsteady forces depend on the vector sum of the forward acceleration and the bending acceleration of the plate. The unsteady drag was augmented when the plate was bent towards the incoming flow. The initial force peaks were significantly reduced when the bending direction was reversed. The development of the edge vortices from the flat plate was measured with the help of particle image velocimetry (PIV) at the 70 % and the 90 % span locations. The PIV measurements were also carried out at the midchord plane closer to the tip region to capture the growth of the tip vortex. The vorticity field calculated from these PIV measurements revealed that controlled bending contributed to a variation in the circulation growth of the edge vortices. During the bend-down case, the circulation growth was faster and the tip vortices stayed closer to the plate. This resulted in increased interaction with the edge vortex at the 90 % span. This interaction was more severe for $AR = 2$ . During the bend-up case, the growth of the edge vortex was delayed, but the vortex grew for a longer time compared with the bend-down case. Finally, a mathematical model is presented which correctly captured the trend of the force histories measured experimentally during both the bend-up and bend-down cases.


Author(s):  
П.А. Поливанов ◽  
А.А. Сидоренко

An experimental study of pulsations characteristics of the zone of flow separation arising at a small airplane-type UAV with a pushing two-blade propeller were carried out. The measurements were done in wind tunnel by unsteady pressure sensors and microphones built into the skin of the UAV for the test cases with and without a rotating propeller. A significant effect of the propeller on the level of pulsations was found. An increase of the incoming flow velocity led to a weakening of this effect. Analysis of the spectral data of the disturbances did not reveal a direct relationship between the propeller noise and the unsteady characteristics of the separation zone.


Author(s):  
Zhengfeng Liu ◽  
Hui Yang ◽  
Haijiang He ◽  
Peiquan Yu ◽  
Yikun Wei ◽  
...  

The characteristics of internal flow and performance of a centrifugal fan is greatly dependent on the inflow pattern. As the fan is subjected to incoming flow from an upstream tube, the size and geometry of the tube affect the three-dimensional motion of local flow and possibly degrades the aerodynamic performance of the fan. In this work, we performed a numerical investigation on the internal flow in a centrifugal fan subjected to incoming flow from an upstream bended inflow tube of various radii using the steady and unsteady Reynolds-averaged Navier-Stokes (RANS and URANS) simulation approaches. The effects of the non-axisymmetric pre-swirl flow generated due to the curvature of the bended inflow tube are demonstrated by analyzing the internal flow characteristics of the fan, including the spatial distributions and temporal variations of pressure field and streamlines, pressure fluctuations in the upstream tube, the inflow and outflow sections of the impeller, and the circumferential distributions of velocity and pressure in the impeller. The numerical results reveal that as the inflow tube is curved with larger curvature (smaller radius of the bended section), the pre-swirl inflow is strong and deteriorates the static pressure rise and static pressure efficiency of the centrifugal fan more remarkably, and the circumferential non-uniformity of pressure and velocity distributions appears inside of the channels of the fan. As the radius of the bended section increases, the instability of the internal flow gets more pronounced, as represented by the stronger pressure fluctuations at the inflow and outflow sections. The prediction capabilities of RANS and URANS approaches are also analyzed based on the numerical data and we found that the latter is more reliable in predicting the performance of the fan.


2021 ◽  
Vol 33 (12) ◽  
pp. 125115
Author(s):  
Zhicheng Wang ◽  
Ang Li ◽  
Baiheng Wu ◽  
Dixia Fan ◽  
Michael S. Triantafyllou ◽  
...  

2021 ◽  
Vol 2119 (1) ◽  
pp. 012154
Author(s):  
D M Bozheeva ◽  
D A Dekterev ◽  
Ar A Dekterev ◽  
A A Dekterev ◽  
D V Platonov

Abstract An experimental and computational study of the NACA0016 airfoil has been carried out for two cases: a stationary airfoil in an incoming flow on an aerodynamic stand and an airfoil moving along a circular trajectory in a stationary flow in a hydrodynamic stand. The Reynolds number for both cases was 60000. A qualitative comparison of the velocity fields for the cases with smooth airflow and boundary layer separation was carried out. It is shown that the used calculation methods describe the task under study with sufficient quality.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012164
Author(s):  
K. A. Mitin ◽  
V. S. Berdnikov ◽  
N. I. Bodneva ◽  
V. O. Ryabov

Abstract The evolution of unsteady gravitational-capillary convection in a layer of ethyl alcohol with a free surface after sudden electric heating of one of the vertical walls of a rectangular cavity was investigated numerically. The effect of the incoming flow of hot liquid on the time evolution of the temperature field on the opposite thin metal wall of the cavity was investigated. The calculations were carried out by the finite element method in the conjugate two-dimensional formulation with the Prandtl number Pr = 16, and the range of Grashof numbers determined by the heat flux density, 33·103 ≤ Gr ≤ 28·106. It is shown that the maximum local temperature gradients occur on the wall near the liquid-gas interface.


2021 ◽  
Author(s):  
N. Naseri ◽  
S. G. Bochkarev ◽  
V. Y. Bychenkov ◽  
V. Khudik ◽  
G. Shvets

Abstract Relativistic collisionless shocks are considered responsible for particle energization mechanisms leading to particle acceleration. While electron energization in shock front region of electron/ion collisionless shocks are the most commonly studied, the mechanism of electron energization in interaction with self-generated magnetic vortices (MVs) in upstream region is still unclear. We investigate electron energization mechanism in upstream region of electron/ion relativistic collisionless shocks, using two dimensional particle-in-cell (PIC) simulations. We discuss mechanism of electron energization which takes place in upstream region of the shock, where the counter stream particles interact with incoming flow. The energy gain of electrons happens during their interaction with evolving fields of self-generated magnetic vortices in this region. Three Fermi-like electron energization scenarios are discussed. Stochastic acceleration of electrons in interaction with fields of MV leads to anisotropic heating of fast electrons due to diffusion in the momentum space of electrons and, finally, synergetic effect of evolving fields of MVs leads to the formation of a power-law tail of supra-thermal particles.


2021 ◽  
Author(s):  
Maurizio Porfiri ◽  
Peng Zhang ◽  
Sean D. Peterson

For over a century, scientists have sought to understand how fish orient against an incoming flow, even without visual and flow cues. Here, we make an essential step to elucidate the hydrodynamic underpinnings of rheotaxis through the study of the bidirectional coupling between fish and the surrounding fluid. By modeling a fish as a vortex dipole in an infinite channel with an imposed background flow, we establish a planar dynamical system for the cross-stream coordinate and orientation. The system dynamics captures the existence of a critical flow speed for fish to successfully orient while performing cross-stream, periodic sweeping movements. Model predictions are validated against experimental observations in the literature on the rheotactic behavior of fish deprived of visual and lateral line cues. The crucial role of bidirectional hydrodynamic interactions unveiled by this model points at an overlooked limitation of existing experimental paradigms to study rheotaxis in the laboratory.


Sign in / Sign up

Export Citation Format

Share Document