Turbulent energy density in scale space for inhomogeneous turbulence

2018 ◽  
Vol 842 ◽  
pp. 532-553 ◽  
Author(s):  
Fujihiro Hamba

The energy spectrum is commonly used to describe the scale dependence of the turbulent fluctuations in homogeneous isotropic turbulence. In contrast, one-point statistical quantities, such as the turbulent kinetic energy, are employed for inhomogeneous turbulence modelling. To obtain a better understanding of inhomogeneous turbulence, some attempts have been made to describe its scale dependence by using the second-order structure function and the two-point velocity correlation. However, previous expressions for the energy density in the scale space do not satisfy the requirement that it should be non-negative. In this work, a new expression for the energy density in the scale space is proposed on the basis of the two-point velocity correlation; the integral with a filter function is introduced to satisfy the non-negativity of the energy density. Direct numerical simulation (DNS) data of homogeneous isotropic turbulence were first used to assess the role of the energy density by comparing it with the energy spectrum. DNS data of a turbulent channel flow were then used to investigate the energy density and its transport equation in inhomogeneous turbulence. It was shown that the new energy density is positive in the scale space of the homogeneous direction. The energy transfer was successfully examined in the scale space both in the homogeneous and inhomogeneous directions. The energy cascade from large to small scales was clearly observed. Moreover, the inverse energy cascade from large to very large scales was observed in the scale space of the spanwise direction.

2021 ◽  
Vol 931 ◽  
Author(s):  
Fujihiro Hamba

The energy spectrum is commonly used to describe the scale dependence of turbulent fluctuations in homogeneous isotropic turbulence. In contrast, one-point statistical quantities, such as the turbulent kinetic energy, are mainly employed for inhomogeneous turbulence models. Attempts have been made to describe the scale dependence of inhomogeneous turbulence using the second-order structure function and two-point velocity correlation. However, unlike the energy spectrum, expressions for the energy density in the scale space fail to satisfy the requirement of being non-negative. In this study, a new expression for the scale-space energy density based on filtered velocities is proposed to clarify the reasons behind the negative values of the energy density and to obtain a better understanding of inhomogeneous turbulence. The new expression consists of homogeneous and inhomogeneous parts; the former is always non-negative, while the latter can be negative because of the turbulence inhomogeneity. Direct numerical simulation data of homogeneous isotropic turbulence and a turbulent channel flow are used to evaluate the two parts of the energy density and turbulent energy. It was found that the inhomogeneous part of the turbulent energy shows non-zero values near the wall and at the centre of a channel flow. In particular, the inhomogeneous part of the energy density changes its sign depending on the scale. A concave profile of the filtered-velocity variance at the wall accounts for the negative value of the energy density in the region very close to the wall.


1997 ◽  
Vol 345 ◽  
pp. 307-345 ◽  
Author(s):  
SHIGEO KIDA ◽  
SUSUMU GOTO

A set of integro-differential equations in the Lagrangian renormalized approximation (Kaneda 1981) is rederived by applying a perturbation method developed by Kraichnan (1959), which is based upon an extraction of direct interactions among Fourier modes of a velocity field and was applied to the Eulerian velocity correlation and response functions, to the Lagrangian ones for homogeneous isotropic turbulence. The resultant set of integro-differential equations for these functions has no adjustable free parameters. The shape of the energy spectrum function is determined numerically in the universal range for stationary turbulence, and in the whole wavenumber range in a similarly evolving form for the freely decaying case. The energy spectrum in the universal range takes the same shape in both cases, which also agrees excellently with many measurements of various kinds of real turbulence as well as numerical results obtained by Gotoh et al. (1988) for a decaying case as an initial value problem. The skewness factor of the longitudinal velocity derivative is calculated to be −0.66 for stationary turbulence. The wavenumber dependence of the eddy viscosity is also determined.


2008 ◽  
Vol 605 ◽  
pp. 355-366 ◽  
Author(s):  
SUSUMU GOTO

In order to investigate the physical mechanism of the energy cascade in homogeneous isotropic turbulence, the internal energy and its transfer rate are defined as a function of scale, space and time. Direct numerical simulation of turbulence at a moderate Reynolds number verifies that the energy cascade can be caused by the successive creation of smaller-scale tubular vortices in the larger-scale straining regions existing between pairs of larger-scale tubular vortices. Movies are available with the online version of the paper.


2019 ◽  
Vol 4 (10) ◽  
Author(s):  
Mohamad Ibrahim Cheikh ◽  
James Chen ◽  
Mingjun Wei

2014 ◽  
Vol 760 ◽  
pp. 39-62 ◽  
Author(s):  
P. C. Valente ◽  
C. B. da Silva ◽  
F. T. Pinho

AbstractDirect numerical simulations of statistically steady homogeneous isotropic turbulence in viscoelastic fluids described by the FENE-P model, such as those laden with polymers, are presented. It is shown that the strong depletion of the turbulence dissipation reported by previous authors does not necessarily imply a depletion of the nonlinear energy cascade. However, for large relaxation times, of the order of the eddy turnover time, the polymers remove more energy from the large scales than they can dissipate and transfer the excess energy back into the turbulent dissipative scales. This is effectively a polymer-induced kinetic energy cascade which competes with the nonlinear energy cascade of the turbulence leading to its depletion. It is also shown that the total energy flux to the small scales from both cascade mechanisms remains approximately the same fraction of the kinetic energy over the turnover time as the nonlinear energy cascade flux in Newtonian turbulence.


Sign in / Sign up

Export Citation Format

Share Document