scholarly journals Experiments on wave propagation in grease ice: combined wave gauges and particle image velocimetry measurements

2019 ◽  
Vol 864 ◽  
pp. 876-898 ◽  
Author(s):  
Jean Rabault ◽  
Graig Sutherland ◽  
Atle Jensen ◽  
Kai H. Christensen ◽  
Aleksey Marchenko

Water wave attenuation by grease ice is a key mechanism for the polar regions, as waves in ice influence many phenomena such as ice drift, ice breaking and ice formation. However, the models presented so far in the literature are limited in a number of regards, and more insights are required from either laboratory experiments or fieldwork for these models to be validated and improved. Unfortunately, performing detailed measurements of wave propagation in grease ice, either in the field or in the laboratory, is challenging. As a consequence, laboratory data are relatively scarce, and often consist of only a couple of wave elevation measurements along the length of the wave tank. We present combined measurements of wave elevation using an array of ultrasonic probes, and water kinematics using particle image velocimetry (PIV), in a small-scale wave tank experiment. Experiments are performed over a wider frequency range than has been previously investigated. The wave elevation measurements are used to compute the wavenumber and exponential damping coefficient. In contrast to a previous study in grease ice, we find that the wavenumber is consistent with the mass loading model, i.e. it increases compared with the open water case. Wave attenuation is compared with a series of one-layer models, and we show that they satisfactorily describe the viscous damping occurring. PIV data are also consistent with exponential wave amplitude attenuation, and a proper orthogonal decomposition analysis reveals the existence of mean flows under the ice that are a consequence of the displacement and packing of the ice induced by the gradient in the wave-induced stress. Finally, we show that the dynamics of grease ice can generate eddy structures that inject eddy viscosity into the water under the grease ice, which would lead to enhanced mixing and participating in energy dissipation.

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Ahmad Falahatpisheh ◽  
Arash Kheradvar

Introduction: The two-dimensional (2D) echocardiographic particle image velocimetry technique that was introduced in 2010 received much attention in clinical cardiology. Cardiac flow visualization based on contrast echocardiography results in images with high temporal resolution that are obtainable at relatively low cost. This makes it an ideal diagnostic and follow-up tool for routine clinical use. However, cardiac flow in a cardiac cycle is multidirectional with a tendency to spin in three dimensions rather than two-dimensional curl. Here, for the first time, we introduce a volumetric echocardiographic particle image velocimetry technique that robustly acquires the flow in three spatial dimensions and in time: Volumetric Echocardiographic Particle Image Velocimetry (V-Echo-PIV). Methods: V-Echo-PIV technique utilizes matrix array 3D ultrasound probes to capture the flow seeded with an ultrasound contrast agent (Definity). For this feasibility study, we used a pulse duplicator with a silicone ventricular sac along with bioprosthetic heart valves at the inlet and outlet. GE Vivid E9 system with an Active Matrix 4D Volume Phased Array probe at 30 Hz was used to capture the flow data (Figure 1). Results: The 3D particle field was obtained with excellent spatial resolution without significant noise (Figure 1). 3D velocity field was successfully captured for multiple cardiac cycles. Flow features are shown in Figure 2 where the velocity vectors in two selected slices and some streamlines in 3D space are depicted. Conclusions: We report successful completion of the feasibility studies for volumetric echocardiographic PIV in an LV phantom. The small-scale features of flow in the LV phantom were revealed by this technique. Validation and human studies are currently in progress.


Author(s):  
Jule Scharnke ◽  
Rene Lindeboom ◽  
Bulent Duz

Breaking waves have been studied for many decades and are still of interest as these waves contribute significantly to the dynamics and loading of offshore structures. In current MARIN research this awareness has led to the setup of an experiment to determine the kinematics of breaking waves using Particle Image Velocimetry (PIV). The purpose of the measurement campaign is to determine the evolution of the kinematics of breaking focussed waves. In addition to the PIV measurements in waves, small scale wave-in-deck impact load measurements on a fixed deck box were carried out in the same wave conditions. To investigate the link between wave kinematics and wave-in-deck impact loads, simplified loading models for estimating horizontal deck impact loads were applied and compared to the measured impact loads. In this paper, the comparison of the model test data to estimated loads is presented.


AIAA Journal ◽  
1999 ◽  
Vol 37 (7) ◽  
pp. 798-804 ◽  
Author(s):  
N. J. Lawson ◽  
G. J. Page ◽  
N. A. Halliwell ◽  
J. M. Coupland

AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 798-804
Author(s):  
N. J. Lawson ◽  
G. J. Page ◽  
N. A. Halliwell ◽  
J. M. Coupland

2020 ◽  
Vol 328 ◽  
pp. 05004
Author(s):  
Pavel Procházka ◽  
Václav Uruba

The Particle Image Velocimetry is utilized to investigate flow behind a cylinder of finite length with subcritical value of Aspect Ratio (AR). The cylinder is submitted to uniform freestream with very low intensity of turbulence and thin laminar boundary layer. The flow field cannot be expected as 2D even for time-averaged quantities. The Strouhal number is evaluated in various planes of measurement. The wake is fully turbulent and is composed of many streamwise and spanwise-oriented structures. Such complex flow is very convenient to be subjected to dynamical decomposition analysis.


Sign in / Sign up

Export Citation Format

Share Document