Direct numerical simulations of Rayleigh–Bénard convection in water with non-Oberbeck–Boussinesq effects

2019 ◽  
Vol 881 ◽  
pp. 1073-1096 ◽  
Author(s):  
Andreas D. Demou ◽  
Dimokratis G. E. Grigoriadis

Rayleigh–Bénard convection in water is studied by means of direct numerical simulations, taking into account the variation of properties. The simulations considered a three-dimensional (3-D) cavity with a square cross-section and its two-dimensional (2-D) equivalent, covering a Rayleigh number range of $10^{6}\leqslant Ra\leqslant 10^{9}$ and using temperature differences up to 60 K. The main objectives of this study are (i) to investigate and report differences obtained by 2-D and 3-D simulations and (ii) to provide a first appreciation of the non-Oberbeck–Boussinesq (NOB) effects on the near-wall time-averaged and root-mean-squared (r.m.s.) temperature fields. The Nusselt number and the thermal boundary layer thickness exhibit the most pronounced differences when calculated in two dimensions and three dimensions, even though the $Ra$ scaling exponents are similar. These differences are closely related to the modification of the large-scale circulation pattern and become less pronounced when the NOB values are normalised with the respective Oberbeck–Boussinesq (OB) values. It is also demonstrated that NOB effects modify the near-wall temperature statistics, promoting the breaking of the top–bottom symmetry which characterises the OB approximation. The most prominent NOB effect in the near-wall region is the modification of the maximum r.m.s. values of temperature, which are found to increase at the top and decrease at the bottom of the cavity.

2014 ◽  
Vol 762 ◽  
pp. 232-255 ◽  
Author(s):  
Susanne Horn ◽  
Olga Shishkina

AbstractWe consider rotating Rayleigh–Bénard convection of a fluid with a Prandtl number of $\mathit{Pr}=0.8$ in a cylindrical cell with an aspect ratio ${\it\Gamma}=1/2$. Direct numerical simulations (DNS) were performed for the Rayleigh number range $10^{5}\leqslant \mathit{Ra}\leqslant 10^{9}$ and the inverse Rossby number range $0\leqslant 1/\mathit{Ro}\leqslant 20$. We propose a method to capture regime transitions based on the decomposition of the velocity field into toroidal and poloidal parts. We identify four different regimes. First, a buoyancy-dominated regime occurring while the toroidal energy $e_{tor}$ is not affected by rotation and remains equal to that in the non-rotating case, $e_{tor}^{0}$. Second, a rotation-influenced regime, starting at rotation rates where $e_{tor}>e_{tor}^{0}$ and ending at a critical inverse Rossby number $1/\mathit{Ro}_{cr}$ that is determined by the balance of the toroidal and poloidal energy, $e_{tor}=e_{pol}$. Third, a rotation-dominated regime, where the toroidal energy $e_{tor}$ is larger than both $e_{pol}$ and $e_{tor}^{0}$. Fourth, a geostrophic regime for high rotation rates where the toroidal energy drops below the value for non-rotating convection.


2018 ◽  
Vol 166 ◽  
pp. 1-8 ◽  
Author(s):  
Gijs L. Kooij ◽  
Mikhail A. Botchev ◽  
Edo M.A. Frederix ◽  
Bernard J. Geurts ◽  
Susanne Horn ◽  
...  

2011 ◽  
Vol 688 ◽  
pp. 461-492 ◽  
Author(s):  
Stephan Weiss ◽  
Guenter Ahlers

AbstractWe report on the influence of rotation about a vertical axis on the large-scale circulation (LSC) of turbulent Rayleigh–Bénard convection in a cylindrical vessel with aspect ratio $\Gamma \equiv D/ L= 0. 50$ (where $D$ is the diameter and $L$ the height of the sample). The working fluid is water at an average temperature ${T}_{av} = 40{~}^{\ensuremath{\circ} } \mathrm{C} $ with a Prandtl number $\mathit{Pr}= 4. 38$. For rotation rates $\Omega \lesssim 1~\mathrm{rad} ~{\mathrm{s} }^{\ensuremath{-} 1} $, corresponding to inverse Rossby numbers $1/ \mathit{Ro}$ between 0 and 20, we investigated the temperature distribution at the sidewall and from it deduced properties of the LSC. The work covered the Rayleigh-number range $2. 3\ensuremath{\times} 1{0}^{9} \lesssim \mathit{Ra}\lesssim 7. 2\ensuremath{\times} 1{0}^{10} $. We measured the vertical sidewall temperature gradient, the dynamics of the LSC and flow-mode transitions from single-roll states (SRSs) to double-roll states (DRSs). We found that modest rotation stabilizes the SRSs. For modest $1/ \mathit{Ro}\lesssim 1$ we found the unexpected result that the vertical LSC plane rotated in the prograde direction (i.e. faster than the sample chamber), with the rotation at the horizontal midplane faster than near the top and bottom. This differential rotation led to disruptive events called half-turns, where the plane of the top or bottom section of the LSC underwent a rotation through an angle of $2\lrm{\pi} $ relative to the main portion of the LSC. The signature of the LSC persisted even for large $1/ \mathit{Ro}$ where Ekman vortices are expected. We consider the possibility that this signature actually is generated by a two-vortex state rather than by a LSC. Whenever possible, we compare our results with those for a $\Gamma = 1$ sample by Zhong & Ahlers (J. Fluid Mech., vol. 665, 2010, pp. 300–333).


1998 ◽  
Vol 373 ◽  
pp. 221-254 ◽  
Author(s):  
S. ANANDA THEERTHAN ◽  
JAYWANT H. ARAKERI

Experiments indicate that turbulent free convection over a horizontal surface (e.g. Rayleigh–Bénard convection) consists of essentially line plumes near the walls, at least for moderately high Rayleigh numbers. Based on this evidence, we propose here a two-dimensional model for near-wall dynamics in Rayleigh–Bénard convection and in general for convection over heated horizontal surfaces. The model proposes a periodic array of steady laminar two-dimensional plumes. A plume is fed on either side by boundary layers on the wall. The results from the model are obtained in two ways. One of the methods uses the similarity solution of Rotem & Classen (1969) for the boundary layer and the similarity solution of Fuji (1963) for the plume. We have derived expressions for mean temperature and temperature and velocity fluctuations near the wall. In the second approach, we compute the two-dimensional flow field in a two-dimensional rectangular open cavity. The number of plumes in the cavity depends on the length of the cavity. The plume spacing is determined from the critical length at which the number of plumes increases by one. The results for average plume spacing and the distribution of r.m.s. temperature and velocity fluctuations are shown to be in acceptable agreement with experimental results.


2010 ◽  
Vol 664 ◽  
pp. 297-312 ◽  
Author(s):  
QUAN ZHOU ◽  
RICHARD J. A. M. STEVENS ◽  
KAZUYASU SUGIYAMA ◽  
SIEGFRIED GROSSMANN ◽  
DETLEF LOHSE ◽  
...  

The shapes of the velocity and temperature profiles near the horizontal conducting plates' centre regions in turbulent Rayleigh–Bénard convection are studied numerically and experimentally over the Rayleigh number range 108 ≲ Ra ≲ 3 × 1011 and the Prandtl number range 0.7 ≲ Pr ≲ 5.4. The results show that both the temperature and velocity profiles agree well with the classical Prandtl–Blasius (PB) laminar boundary-layer profiles, if they are re-sampled in the respective dynamical reference frames that fluctuate with the instantaneous thermal and velocity boundary-layer thicknesses. The study further shows that the PB boundary layer in turbulent thermal convection not only holds in a time-averaged sense, but is most of the time also valid in an instantaneous sense.


2018 ◽  
Vol 858 ◽  
pp. 437-473 ◽  
Author(s):  
B. Favier ◽  
J. Purseed ◽  
L. Duchemin

We study the evolution of a melting front between the solid and liquid phases of a pure incompressible material where fluid motions are driven by unstable temperature gradients. In a plane-layer geometry, this can be seen as classical Rayleigh–Bénard convection where the upper solid boundary is allowed to melt due to the heat flux brought by the fluid underneath. This free-boundary problem is studied numerically in two dimensions using a phase-field approach, classically used to study the melting and solidification of alloys, which we dynamically couple with the Navier–Stokes equations in the Boussinesq approximation. The advantage of this approach is that it requires only moderate modifications of classical numerical methods. We focus on the case where the solid is initially nearly isothermal, so that the evolution of the topography is related to the inhomogeneous heat flux from thermal convection, and does not depend on the conduction problem in the solid. From a very thin stable layer of fluid, convection cells appear as the depth – and therefore the effective Rayleigh number – of the layer increases. The continuous melting of the solid leads to dynamical transitions between different convection cell sizes and topography amplitudes. The Nusselt number can be larger than its value for a planar upper boundary, due to the feedback of the topography on the flow, which can stabilize large-scale laminar convection cells.


Sign in / Sign up

Export Citation Format

Share Document