scholarly journals Toroidal and poloidal energy in rotating Rayleigh–Bénard convection

2014 ◽  
Vol 762 ◽  
pp. 232-255 ◽  
Author(s):  
Susanne Horn ◽  
Olga Shishkina

AbstractWe consider rotating Rayleigh–Bénard convection of a fluid with a Prandtl number of $\mathit{Pr}=0.8$ in a cylindrical cell with an aspect ratio ${\it\Gamma}=1/2$. Direct numerical simulations (DNS) were performed for the Rayleigh number range $10^{5}\leqslant \mathit{Ra}\leqslant 10^{9}$ and the inverse Rossby number range $0\leqslant 1/\mathit{Ro}\leqslant 20$. We propose a method to capture regime transitions based on the decomposition of the velocity field into toroidal and poloidal parts. We identify four different regimes. First, a buoyancy-dominated regime occurring while the toroidal energy $e_{tor}$ is not affected by rotation and remains equal to that in the non-rotating case, $e_{tor}^{0}$. Second, a rotation-influenced regime, starting at rotation rates where $e_{tor}>e_{tor}^{0}$ and ending at a critical inverse Rossby number $1/\mathit{Ro}_{cr}$ that is determined by the balance of the toroidal and poloidal energy, $e_{tor}=e_{pol}$. Third, a rotation-dominated regime, where the toroidal energy $e_{tor}$ is larger than both $e_{pol}$ and $e_{tor}^{0}$. Fourth, a geostrophic regime for high rotation rates where the toroidal energy drops below the value for non-rotating convection.

2019 ◽  
Vol 881 ◽  
pp. 1073-1096 ◽  
Author(s):  
Andreas D. Demou ◽  
Dimokratis G. E. Grigoriadis

Rayleigh–Bénard convection in water is studied by means of direct numerical simulations, taking into account the variation of properties. The simulations considered a three-dimensional (3-D) cavity with a square cross-section and its two-dimensional (2-D) equivalent, covering a Rayleigh number range of $10^{6}\leqslant Ra\leqslant 10^{9}$ and using temperature differences up to 60 K. The main objectives of this study are (i) to investigate and report differences obtained by 2-D and 3-D simulations and (ii) to provide a first appreciation of the non-Oberbeck–Boussinesq (NOB) effects on the near-wall time-averaged and root-mean-squared (r.m.s.) temperature fields. The Nusselt number and the thermal boundary layer thickness exhibit the most pronounced differences when calculated in two dimensions and three dimensions, even though the $Ra$ scaling exponents are similar. These differences are closely related to the modification of the large-scale circulation pattern and become less pronounced when the NOB values are normalised with the respective Oberbeck–Boussinesq (OB) values. It is also demonstrated that NOB effects modify the near-wall temperature statistics, promoting the breaking of the top–bottom symmetry which characterises the OB approximation. The most prominent NOB effect in the near-wall region is the modification of the maximum r.m.s. values of temperature, which are found to increase at the top and decrease at the bottom of the cavity.


2010 ◽  
Vol 665 ◽  
pp. 300-333 ◽  
Author(s):  
JIN-QIANG ZHONG ◽  
GUENTER AHLERS

Measurements of the Nusselt number Nu and of properties of the large-scale circulation (LSC) for turbulent Rayleigh–Bénard convection are presented in the presence of rotation about a vertical axis at angular speeds 0 ≤ Ω ≲ 2 rad s−1. The sample chamber was cylindrical with a height equal to the diameter, and the fluid contained in it was water. The LSC was studied by measuring sidewall temperatures as a function of azimuthal position. The measurements covered the Rayleigh-number range 3 × 108 ≲ Ra ≲ 2 × 1010, the Prandtl-number range 3.0 ≲ Pr ≲ 6.4 and the Rossby-number range 0 ≤ (1/Ro ∝ Ω) ≲ 20. At modest 1/Ro, we found an enhancement of Nu due to Ekman-vortex pumping by as much as 20%. As 1/Ro increased from zero, this enhancement set in discontinuously at and grew above 1/Roc. The value of 1/Roc varied from about 0.48 at Pr = 3 to about 0.35 at Pr = 6.2. At sufficiently large 1/Ro (large rotation rates), Nu decreased again, due to the Taylor–Proudman (TP) effect, and reached values well below its value without rotation. The maximum enhancement increased with increasing Pr and decreasing Ra and, we believe, was determined by a competition between the Ekman enhancement and the TP depression. The temperature signature along the sidewall of the LSC was detectable by our method up to 1/Ro ≃ 1. The frequency of cessations α of the LSC grew dramatically with increasing 1/Ro, from about 10−5 s−1 at 1/Ro = 0 to about 2 × 10−4 s−1 at 1/Ro = 0.25. A discontinuous further increase of α, by about a factor of 2.5, occurred at 1/Roc. With increasing 1/Ro, the time-averaged and azimuthally averaged vertical thermal gradient along the sidewall first decreased and then increased again, with a minimum somewhat below 1/Roc. The Reynolds number of the LSC, determined from oscillations of the time correlation functions of the sidewall temperatures, was constant within our resolution for 1/Ro ≲ 0.3 and then decreased with increasing 1/Ro. The retrograde rotation rate of the LSC circulation plane exhibited complex behaviour as a function of 1/Ro even at small rotation rates corresponding to 1/Ro < 1/Roc.


2011 ◽  
Vol 688 ◽  
pp. 461-492 ◽  
Author(s):  
Stephan Weiss ◽  
Guenter Ahlers

AbstractWe report on the influence of rotation about a vertical axis on the large-scale circulation (LSC) of turbulent Rayleigh–Bénard convection in a cylindrical vessel with aspect ratio $\Gamma \equiv D/ L= 0. 50$ (where $D$ is the diameter and $L$ the height of the sample). The working fluid is water at an average temperature ${T}_{av} = 40{~}^{\ensuremath{\circ} } \mathrm{C} $ with a Prandtl number $\mathit{Pr}= 4. 38$. For rotation rates $\Omega \lesssim 1~\mathrm{rad} ~{\mathrm{s} }^{\ensuremath{-} 1} $, corresponding to inverse Rossby numbers $1/ \mathit{Ro}$ between 0 and 20, we investigated the temperature distribution at the sidewall and from it deduced properties of the LSC. The work covered the Rayleigh-number range $2. 3\ensuremath{\times} 1{0}^{9} \lesssim \mathit{Ra}\lesssim 7. 2\ensuremath{\times} 1{0}^{10} $. We measured the vertical sidewall temperature gradient, the dynamics of the LSC and flow-mode transitions from single-roll states (SRSs) to double-roll states (DRSs). We found that modest rotation stabilizes the SRSs. For modest $1/ \mathit{Ro}\lesssim 1$ we found the unexpected result that the vertical LSC plane rotated in the prograde direction (i.e. faster than the sample chamber), with the rotation at the horizontal midplane faster than near the top and bottom. This differential rotation led to disruptive events called half-turns, where the plane of the top or bottom section of the LSC underwent a rotation through an angle of $2\lrm{\pi} $ relative to the main portion of the LSC. The signature of the LSC persisted even for large $1/ \mathit{Ro}$ where Ekman vortices are expected. We consider the possibility that this signature actually is generated by a two-vortex state rather than by a LSC. Whenever possible, we compare our results with those for a $\Gamma = 1$ sample by Zhong & Ahlers (J. Fluid Mech., vol. 665, 2010, pp. 300–333).


2010 ◽  
Vol 664 ◽  
pp. 297-312 ◽  
Author(s):  
QUAN ZHOU ◽  
RICHARD J. A. M. STEVENS ◽  
KAZUYASU SUGIYAMA ◽  
SIEGFRIED GROSSMANN ◽  
DETLEF LOHSE ◽  
...  

The shapes of the velocity and temperature profiles near the horizontal conducting plates' centre regions in turbulent Rayleigh–Bénard convection are studied numerically and experimentally over the Rayleigh number range 108 ≲ Ra ≲ 3 × 1011 and the Prandtl number range 0.7 ≲ Pr ≲ 5.4. The results show that both the temperature and velocity profiles agree well with the classical Prandtl–Blasius (PB) laminar boundary-layer profiles, if they are re-sampled in the respective dynamical reference frames that fluctuate with the instantaneous thermal and velocity boundary-layer thicknesses. The study further shows that the PB boundary layer in turbulent thermal convection not only holds in a time-averaged sense, but is most of the time also valid in an instantaneous sense.


2012 ◽  
Vol 710 ◽  
pp. 260-276 ◽  
Author(s):  
Quan Zhou ◽  
Bo-Fang Liu ◽  
Chun-Mei Li ◽  
Bao-Chang Zhong

AbstractWe report high-precision measurements of the Nusselt number $Nu$ as a function of the Rayleigh number $Ra$ in water-filled rectangular Rayleigh–Bénard convection cells. The horizontal length $L$ and width $W$ of the cells are 50.0 and 15.0 cm, respectively, and the heights $H= 49. 9$, 25.0, 12.5, 6.9, 3.5, and 2.4 cm, corresponding to the aspect ratios $({\Gamma }_{x} \equiv L/ H, {\Gamma }_{y} \equiv W/ H)= (1, 0. 3)$, $(2, 0. 6)$, $(4, 1. 2)$, $(7. 3, 2. 2)$, $(14. 3, 4. 3)$, and $(20. 8, 6. 3)$. The measurements were carried out over the Rayleigh number range $6\ensuremath{\times} 1{0}^{5} \lesssim Ra\lesssim 1{0}^{11} $ and the Prandtl number range $5. 2\lesssim Pr\lesssim 7$. Our results show that for rectangular geometry turbulent heat transport is independent of the cells’ aspect ratios and hence is insensitive to the nature and structures of the large-scale mean flows of the system. This is slightly different from the observations in cylindrical cells where $Nu$ is found to be in general a decreasing function of $\Gamma $, at least for $\Gamma = 1$ and larger. Such a difference is probably a manifestation of the finite plate conductivity effect. Corrections for the influence of the finite conductivity of the top and bottom plates are made to obtain the estimates of $N{u}_{\infty } $ for plates with perfect conductivity. The local scaling exponents ${\ensuremath{\beta} }_{l} $ of $N{u}_{\infty } \ensuremath{\sim} R{a}^{{\ensuremath{\beta} }_{l} } $ are calculated and found to increase from 0.243 at $Ra\simeq 9\ensuremath{\times} 1{0}^{5} $ to 0.327 at $Ra\simeq 4\ensuremath{\times} 1{0}^{10} $.


2012 ◽  
Vol 109 (25) ◽  
Author(s):  
Keith Julien ◽  
Edgar Knobloch ◽  
Antonio M. Rubio ◽  
Geoffrey M. Vasil

2011 ◽  
Vol 691 ◽  
pp. 52-68 ◽  
Author(s):  
Laura E. Schmidt ◽  
Enrico Calzavarini ◽  
Detlef Lohse ◽  
Federico Toschi ◽  
Roberto Verzicco

AbstractPrevious numerical studies have shown that the ‘ultimate regime of thermal convection’ can be attained in a Rayleigh–Bénard cell when the kinetic and thermal boundary layers are eliminated by replacing both lateral and horizontal walls with periodic boundary conditions (homogeneous Rayleigh–Bénard convection). Then, the heat transfer scales like $\mathit{Nu}\ensuremath{\sim} {\mathit{Ra}}^{1/ 2} $ and turbulence intensity as $\mathit{Re}\ensuremath{\sim} {\mathit{Ra}}^{1/ 2} $, where the Rayleigh number $\mathit{Ra}$ indicates the strength of the driving force (for fixed values of $\mathit{Pr}$, which is the ratio between kinematic viscosity and thermal diffusivity). However, experiments never operate in unbounded domains and it is important to understand how confinement might alter the approach to this ultimate regime. Here we consider homogeneous Rayleigh–Bénard convection in a laterally confined geometry – a small-aspect-ratio vertical cylindrical cell – and show evidence of the ultimate regime as $\mathit{Ra}$ is increased: in spite of the lateral confinement and the resulting kinetic boundary layers, we still find $\mathit{Nu}\ensuremath{\sim} \mathit{Re}\ensuremath{\sim} {\mathit{Ra}}^{1/ 2} $ at $\mathit{Pr}= 1$. Further, it is shown that the system supports solutions composed of modes of exponentially growing vertical velocity and temperature fields, with $\mathit{Ra}$ as the critical parameter determining the properties of these modes. Counter-intuitively, in the low-$\mathit{Ra}$ regime, or for very narrow cylinders, the numerical simulations are susceptible to these solutions, which can dominate the dynamics and lead to very high and unsteady heat transfer. As $\mathit{Ra}$ is increased, interaction between modes stabilizes the system, evidenced by the increasing homogeneity and reduced fluctuations in the root-mean-square velocity and temperature fields. We also test that physical results become independent of the periodicity length of the cylinder, a purely numerical parameter, as the aspect ratio is increased.


Sign in / Sign up

Export Citation Format

Share Document