scholarly journals The influence of fluid–structure interaction on cloud cavitation about a stiff hydrofoil. Part 1.

2020 ◽  
Vol 896 ◽  
Author(s):  
Samuel M. Smith ◽  
James A. Venning ◽  
Bryce W. Pearce ◽  
Yin Lu Young ◽  
Paul A. Brandner

2020 ◽  
Vol 897 ◽  
Author(s):  
Samuel M. Smith ◽  
James A. Venning ◽  
Bryce W. Pearce ◽  
Yin Lu Young ◽  
Paul A. Brandner


2022 ◽  
Vol 934 ◽  
Author(s):  
Yin Lu Young ◽  
Jasmine C. Chang ◽  
Samuel M. Smith ◽  
James A. Venning ◽  
Bryce W. Pearce ◽  
...  

Experimental studies of the influence of fluid–structure interaction on cloud cavitation about a stiff stainless steel (SS) and a flexible composite (CF) hydrofoil have been presented in Parts I (Smith et al., J. Fluid Mech., vol. 896, 2020a, p. A1) and II (Smith et al., J. Fluid Mech., vol. 897, 2020b, p. A28). This work further analyses the data and complements the measurements with reduced-order model predictions to explain the complex response. A two degrees-of-freedom steady-state model is used to explain why the tip bending and twisting deformations are much higher for the CF hydrofoil, while the hydrodynamic load coefficients are very similar. A one degree-of-freedom dynamic model, which considers the spanwise bending deflection only, is used to capture the dynamic response of both hydrofoils. Peaks in the frequency response spectrum are observed at the re-entrant jet-driven and shock-wave-driven cavity shedding frequencies, system bending frequency and heterodyne frequencies caused by the mixing of the two cavity shedding frequencies. The predictions capture the increase of the mean system bending frequency and wider bandwidth of frequency modulation with decreasing cavitation number. The results show that, in general, the amplitude of the deformation fluctuation is higher, but the amplitude of the load fluctuation is lower for the CF hydrofoil compared with the SS hydrofoil. Significant dynamic load amplification is observed at subharmonic lock-in when the shock-wave-driven cavity shedding frequency matches with the nearest subharmonic of the system bending frequency of the CF hydrofoil. Both measurements and predictions show an absence of dynamic load amplification at primary lock-in because of the low intensity of cavity load fluctuations with high cavitation number.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Samuel M. Smith ◽  
James A. Venning ◽  
Dean R. Giosio ◽  
Paul A. Brandner ◽  
Bryce W. Pearce ◽  
...  

Despite recent extensive research into fluid–structure interaction (FSI) of cavitating hydrofoils, there remain insufficient experimental data to explain many of the observed phenomena. The cloud cavitation behavior around a hydrofoil due to the effect of FSI is investigated, utilizing rigid and compliant three-dimensional (3D) hydrofoils held in a cantilevered configuration in a cavitation tunnel. The hydrofoils have identical undeformed geometry of tapered planform with a constant modified NACA0009 profile. The rigid model is made of stainless steel and the compliant model of a carbon and glass fiber-reinforced epoxy resin with the structural fibers aligned along the spanwise direction to avoid material bend-twist coupling. Tests were conducted at an incidence of 6 deg, a mean chord-based Reynolds number of 0.7 × 106 and cavitation number of 0.8. Force measurements were simultaneously acquired with high-speed imaging to enable correlation of forces with tip bending deformations and cavity physics. Hydrofoil compliance was seen to dampen the higher frequency force fluctuations while showing strong correlation between normal force and tip deflection. The 3D nature of the flow field was seen to cause complex cavitation behavior with two shedding modes observed on both models.


Sign in / Sign up

Export Citation Format

Share Document