Acoustic streaming in turbulent compressible channel flow for heat transfer enhancement

2020 ◽  
Vol 889 ◽  
Author(s):  
Iman Rahbari ◽  
Guillermo Paniagua

2018 ◽  
Vol 30 (7) ◽  
pp. 075108 ◽  
Author(s):  
Yujia Chen ◽  
Yuelong Yu ◽  
Wenwu Zhou ◽  
Di Peng ◽  
Yingzheng Liu

Author(s):  
John R. Willard ◽  
D. Keith Hollingsworth

Confined bubbly flows in millimeter-scale channels produce significant heat transfer enhancement when compared to single-phase flows. Experimental studies support the hypothesis that the enhancement is driven by a convective phenomenon in the liquid phase as opposed to sourcing from microlayer evaporation or active nucleation. A numerical investigation of flow structure and heat transfer produced by a single bubble moving through a millimeter-scale channel was performed in order to document the details of this convective mechanism. The simulation includes thermal boundary conditions emulating those of the experiments, and phase change was omitted in order to focus only on the convective mechanism. The channel is horizontal with a uniform-heat-generation upper wall and an adiabatic lower surface. A Lagrangian framework was adopted such that the computational domain surrounds the bubble and moves at the nominal bubble speed. The liquid around the bubble moves as a low-Reynolds-number unsteady laminar flow. The volume-of-fluid method was used to track the liquid/gas interface. This paper reviews the central results of this simulation regarding wake heat transfer. It then compares the findings regarding Nusselt number enhancement to a reduced-order model on a two-dimensional domain in the wake of the bubble. The model solves the advective-diffusion equation assuming a velocity field consistent with fully developed channel flow in the absence of the bubble. The response of the uniform-heat-generation upper wall is included. The model assumes a temperature profile directly behind the bubble which represents a well-mixed region produced by the passage of the bubble. The significant wake heat transfer enhancement and its decay with distance from the bubble documented by the simulation were captured by the reduced-order model. However, the channel surface temperature recovered in a much shorter distance in the simulation compared to the reduced-order model. This difference is attributed to the omission of transverse conduction within the heated surface in the two-dimensional model. Beyond approximately one bubble diameter into the bubble wake, the complex flow structures are replaced by the momentum field of the precursor channel flow. However, the properties and thickness of the heated upper channel wall govern the heat transfer for many bubble diameters behind the bubble.


2015 ◽  
Vol 2015 (0) ◽  
pp. _1518-1_-_1518-3_
Author(s):  
Hisaaki HASEGAWA ◽  
Yuuki AOKI ◽  
Kousuke ISHIKAWA ◽  
Genta KAWAHARA ◽  
Markus UHLMANN ◽  
...  

2015 ◽  
Vol 81 (823) ◽  
pp. 14-00440-14-00440
Author(s):  
Norihiro TAKAHASHI ◽  
Eisaku MORITA ◽  
Yuhei INOUE ◽  
Guannan XI ◽  
Kyoji INAOKA ◽  
...  

Author(s):  
Longzhong Huang ◽  
Terrence Simon ◽  
Min Zhang ◽  
Youmin Yu ◽  
Mark North ◽  
...  

A synthetic jet is an intermittent jet which issues through an orifice from a closed cavity over half of an oscillation cycle. Over the other half, the flow is drawn back through the same orifice into the cavity as a sink flow. The flow is driven by an oscillating diaphragm, which is one wall of the cavity. Synthetic jets are widely used for heat transfer enhancement since they are effective in disturbing and thinning thermal boundary layers on surfaces being cooled. They do so by creating an intermittently-impinging flow and by carrying to the hot surface turbulence generated by breakdown of the shear layer at the jet edge. The present study documents experimentally and computationally heat transfer performance of an array of synthetic jets used in a heat sink designed for cooling of electronics. This heat sink is comprised of a series of longitudinal fins which constitute walls of parallel channels. In the present design, the synthetic jet flow impinges on the tips of the fins. In the experiment, one channel of a 20-channel heat sink is tested. A second flow, perpendicular to the jet flow, passes through the channel, drawn by a vacuum system. Surface- and time-averaged heat transfer coefficients for the channel are measured, first with just the channel flow active then with the synthetic jets added. The purpose is to assess heat transfer enhancement realized by the synthetic jets. The multiple synthetic jets are driven by a single diaphragm which, in turn, is activated by a piezoelectrically-driven mechanism. The operating frequency of the jets is 1250 Hz with a cycle-maximum jet velocity of 50 m/s, as measured with a miniature hot-film anemometer probe. In the computational portion of the present paper, diaphragm movement is driven by a piston, simulating the experimental conditions. The flow is computed with a dynamic mesh using the commercial software package ANSYS FLUENT. Computed heat transfer coefficients show a good match with experimental values giving a maximum difference of less than 10%. The effects of amplitude and frequency of the diaphragm motion are documented. Changes in heat transfer due to interactions between the synthetic jet flow and the channel flow are documented in cases of differing channel flow velocities as well as differing jet operating conditions. Heat transfer enhancement obtained by activating the synthetic jets can be as large as 300% when the channel flow is of a low velocity compared to the synthetic jet peak velocity (as low as 4 m/s in the present study).


Sign in / Sign up

Export Citation Format

Share Document