ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels
Latest Publications


TOTAL DOCUMENTS

63
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791851197

Author(s):  
Abdul Ahad Khan ◽  
Dilip Choudhary ◽  
Abhishek Basavanna ◽  
Salman Najmee ◽  
Jessica Crisantes ◽  
...  

The physics of the transient behavior of liquid drops impacting hot or cold surfaces are of significance in many different applications such as spray cooling, aircraft icing, etc. Further, the transient heating and cooling of vapor spots and liquid patches is of significance in determining the heat transfer performance parameters in phase change processes such as boiling and condensation. The thermal transients in all these processes are primarily dictated by the passive thermal properties of the solid substrate (e.g. thermal conductivity, specific heat) and by the flow conditions. An active control (or manipulation) of these thermal transients could provide a means to enhance the performance parameters in various phase change-based heat transfer processes. In this study, we experimentally explore the effect of a solid-liquid phase change material (PCM) coating on the thermal characteristics of a liquid drop impacting a hot surface. High-speed optical and infrared imaging techniques are employed for visualizing the flow and measuring the temperatures, respectively. The PCM, depending on its melting temperature and due to its latent heat of fusion, disrupts the normal process of the heating of the drop and cooling of the substrate. The insights obtained from these findings can have a significant impact on several technologies in the areas of phase change-based heat transfer and thermal management.


Author(s):  
John R. Willard ◽  
D. Keith Hollingsworth

Confined bubbly flows in millimeter-scale channels produce significant heat transfer enhancement when compared to single-phase flows. Experimental studies support the hypothesis that the enhancement is driven by a convective phenomenon in the liquid phase as opposed to sourcing from microlayer evaporation or active nucleation. A numerical investigation of flow structure and heat transfer produced by a single bubble moving through a millimeter-scale channel was performed in order to document the details of this convective mechanism. The simulation includes thermal boundary conditions emulating those of the experiments, and phase change was omitted in order to focus only on the convective mechanism. The channel is horizontal with a uniform-heat-generation upper wall and an adiabatic lower surface. A Lagrangian framework was adopted such that the computational domain surrounds the bubble and moves at the nominal bubble speed. The liquid around the bubble moves as a low-Reynolds-number unsteady laminar flow. The volume-of-fluid method was used to track the liquid/gas interface. This paper reviews the central results of this simulation regarding wake heat transfer. It then compares the findings regarding Nusselt number enhancement to a reduced-order model on a two-dimensional domain in the wake of the bubble. The model solves the advective-diffusion equation assuming a velocity field consistent with fully developed channel flow in the absence of the bubble. The response of the uniform-heat-generation upper wall is included. The model assumes a temperature profile directly behind the bubble which represents a well-mixed region produced by the passage of the bubble. The significant wake heat transfer enhancement and its decay with distance from the bubble documented by the simulation were captured by the reduced-order model. However, the channel surface temperature recovered in a much shorter distance in the simulation compared to the reduced-order model. This difference is attributed to the omission of transverse conduction within the heated surface in the two-dimensional model. Beyond approximately one bubble diameter into the bubble wake, the complex flow structures are replaced by the momentum field of the precursor channel flow. However, the properties and thickness of the heated upper channel wall govern the heat transfer for many bubble diameters behind the bubble.


Author(s):  
Hongbin He ◽  
Biao Shen ◽  
Sumitomo Hidaka ◽  
Koji Takahashi ◽  
Yasuyuki Takata

Heat transfer characteristic of a closed two-phase thermosyphon with enhanced boiling surface is studied and compared with that of a copper mirror surface. Two-phase cooling improves heat transfer coefficient (HTC) a lot compared to single-phase liquid cooling. The evaporator surfaces, coated with a pattern of hydrophobic circle spots (non-electroplating Ni-PTFE, 0.5∼2 mm in diameter and 1.5–3 mm in pitch) on Cu substrates, achieve very high heat transfer coefficient and lower the incipience temperature overshoot using water as the working fluid. Sub-atmospheric boiling on the hydrophobic spot-coated surface shows a much better heat transfer performance. Tests with heat loads (30 W to 260 W) reveals the coated surfaces enhance nucleate boiling performance by increasing the bubbles nucleation sites density. Hydrophobic circle spots coated surface with diameter 1 mm, pitch 1.5 mm achieves the maximal heat transfer enhancement with the minimum boiling thermal resistance as low as 0.03 K/W. The comparison of three evaporator surfaces with same spot parameters but different coating materials is carried out experimentally. Ni-PTFE coated surface with immersion method performs the optimal performance of the thermosyphon.


Author(s):  
Anand N. P. Radhakrishnan ◽  
Marc Pradas ◽  
Serafim Kalliadasis ◽  
Asterios Gavriilidis

Micro-engineered devices (MED) are seeing a significant growth in performing separation processes1. Such devices have been implemented in a range of applications from chemical catalytic reactors to product purification systems like microdistillation. One of the biggest advantages of these devices is the dominance of capillarity and interfacial tension forces. A field where MEDs have been used is in gas-liquid separations. These are encountered, for example, after a chemical reactor, where a gaseous component being produced needs immediate removal from the reactor, because it can affect subsequent reactions. The gaseous phase can be effectively removed using an MED with an array of microcapillaries. Phase-separation can then be brought about in a controlled manner along these capillary structures. For a device made from a hydrophilic material (e.g. Si or glass), the wetted phase (e.g. water) flows through the capillaries, while the non-wetted dispersed phase (e.g. gas) is prevented from entering the capillaries, due to capillary pressure. Separation of liquid-liquid flows can also be achieved via this approach. However, the underlying mechanism of phase separation is far from being fully understood. The pressure at which the gas phase enters the capillaries (gas-to-liquid breakthrough) can be estimated from the Young-Laplace equation, governed by the surface tension (γ) of the wetted phase, capillary width (d) and height (h), and the interface equilibrium contact angle (θeq). Similarly, the liquid-to-gas breakthrough pressure (i.e. the point at which complete liquid separation ceases and liquid exits through the gas outlet) can be estimated from the pressure drop across the capillaries via the Hagen-Poiseuille (HP) equation. Several groups reported deviations from these estimates and therefore, included various parameters to account for the deviations. These parameters usually account for (i) flow of wetted phase through ‘n’ capillaries in parallel, (ii) modification of geometric correction factor of Mortensen et al., 2005 2 and (iii) liquid slug length (LS) and number of capillaries (n) during separation. LS has either been measured upstream of the capillary zone or estimated from a scaling law proposed by Garstecki et al., 2006 3. However, this approach does not address the balance between the superficial inlet velocity and net outflow of liquid through each capillary (qc). Another shortcoming of these models has been the estimation of the apparent contact angle (θapp), which plays a critical role in predicting liquid-to-gas breakthrough. θapp is either assumed to be equal to θeq or measured with various techniques, e.g. through capillary rise or a static droplet on a flat substrate, which is significantly different from actual dynamic contact angles during separation. In other cases, the Cox-Voinov model has been used to calculate θapp from θeq and capillary number. Hence, the empirical models available in the literature do not predict realistic breakthrough pressures with sufficient accuracy. Therefore, a more detailed in situ investigation of the critical liquid slug properties during separation is necessary. Here we report advancements in the fundamental understanding of two-phase separation in a gas-liquid separation (GLS) device through a theoretical model developed based on critical events occurring at the gas-liquid interfaces during separation.


Author(s):  
Jensen Hoke ◽  
Todd Bandhauer ◽  
Jack Kotovsky ◽  
Julie Hamilton ◽  
Paul Fontejon

Liquid-vapor phase change heat transfer in microchannels offers a number of significant advantages for thermal management of high heat flux laser diodes, including reduced flow rates and near constant temperature heat rejection. Modern laser diode bars can produce waste heat loads >1 kW cm−2, and prior studies show that microchannel flow boiling heat transfer at these heat fluxes is possible in very compact heat exchanger geometries. This paper describes further performance improvements through area enhancement of microchannels using a pyramid etching scheme that increases heat transfer area by ∼40% over straight walled channels, which works to promote heat spreading and suppress dry-out phenomenon when exposed to high heat fluxes. The device is constructed from a reactive ion etched silicon wafer bonded to borosilicate to allow flow visualization. The silicon layer is etched to contain an inlet and outlet manifold and a plurality of 40μm wide, 200μm deep, 2mm long channels separated by 40μm wide fins. 15μm wide 150μm long restrictions are placed at the inlet of each channel to promote uniform flow rate in each channel as well as flow stability in each channel. In the area enhanced parts either a 3μm or 6μm sawtooth pattern was etched vertically into the walls, which were also scalloped along the flow path with the a 3μm periodicity. The experimental results showed that the 6μm area-enhanced device increased the average maximum heat flux at the heater to 1.26 kW cm2 using R134a, which compares favorably to a maximum of 0.95 kw cm2 dissipated by the plain walled test section. The 3μm area enhanced test sections, which dissipated a maximum of 1.02 kW cm2 showed only a modest increase in performance over the plain walled test sections. Both area enhancement schemes delayed the onset of critical heat flux to higher heat inputs.


Author(s):  
Todd M. Bandhauer ◽  
David R. Hobby ◽  
Chris Jacobsen ◽  
Dave Sherrer

In a variety of electronic systems, cooling of various components imposes a significant challenge. A major aspect that inhibits the performance of many cooling solutions is the thermal resistance between the chip package and the cooling structure. Due to its low thermal conductivity, the thermal interface material (TIM) layer imposes a significant thermal resistance on the chip to cooling fluid thermal path. Advanced cooling methods that bypass the TIM have shown great potential in research and some specialty applications, yet have not been adopted widely by industry due to challenges associated with practical implementation and economic constraints. One advanced cooling method that can bypass the TIM is jet impingement. The impingement cooling device investigated in the current study is external to the integrated circuit (IC) package and could be easily retrofitted onto any existing microchip, similar to a standard heatsink. Jet impingement cooling has proven effective in previous studies. However, it has been shown that jet-to-jet interference severely degrades thermal performance of an impinging jet array. The present research addresses this challenge by utilizing a flow path geometry that allows for withdrawal of the impinging fluid immediately adjacent to each jet in the array. In this study, a jet impingement cooling solution for high-performance ICs was developed and tested. The cooling device was fabricated using modern advanced manufacturing techniques and consisted of an array of micro-scale impinging jets. A second array of fluid return paths was overlain across the jet array to allow for direct fluid extraction in the immediate vicinity of each jet, and fluid return passages were oriented in parallel to the impinging jets. The following key geometric parameters were utilized in the device: jet diameter (D = 300μm), distance from jet to impinging surface (H/D = 2.5), spacing between jets (S/D = 8), spacing between fluid returns (Sr/D = 8), diameter of fluid returns (Dr/D = 5). The device was mounted to a 2cm × 2cm uniformly heated surface which produced up to 165W and the resulting fluid-to-surface temperature difference was measured at a variety of flow rates. For this study, the device was tested using single-phase water. Jet Reynolds number ranged from 300–1500 and an average heat transfer coefficient of 13,100 W m−2 K−1 was achieved at a Reynolds number of only Red = 305.


Author(s):  
Sira Saisorn ◽  
Pochai Srithumkhant ◽  
Pakorn Wongpromma ◽  
Maturose Suchatawat ◽  
Somchai Wongwises

Two-phase flow of R-134a with high confinement number was experimentally carried out in this study. Flow boiling conditions for different orientations were controlled to take place in a stainless steel tube having a diameter of 0.5 mm. Based on a saturation pressure of 8 bar, a heat flux range of 2–26 kW/m2, and a mass flux range of 610–815 kg/m2s, a constant surface heat flux condition was controlled by applied DC power supply on the test section. The flow behaviors were described based on flow pattern and pressure drop data while heat transfer mechanisms were explained by using heat transfer coefficient data. In this work, nucleate boiling was observed, and the importance of the change in the flow direction was neglected, corresponding to the confinement number of around 1.7.


Author(s):  
Mohammadmahdi Talebi ◽  
Keith Cobry ◽  
Sahba Sadir ◽  
Roland Dittmeyer ◽  
Peter Woias

In this work we present a method that provides the possibility to analyze directly the electrical properties of two-phase flow in microchannel boiling systems. It is shown that the use of impedimetric sensing techniques can be used to track two-phase boiling flow. In order to perform such measurements, the electrical impedance of the composite medium in the channel is measured using planar capacitive elements that are implemented over the channel on a glass lid. Working electrodes are fabricated using indium tin oxide on glass and are compressed against a precision machined metal microchannel. Therefore, it is possible to visually analyze two-phase flow inside the microchannel while simultaneously performing electrical impedance measurements. In order to prevent electrochemical reactions between the fluid inside the microchannel and electrodes on the glass lid, a thin layer of SU8 photoresist was deposited as a protective layer. The electrical impedance measurements were characterized over two-phase flow regimes including bubbly flow, slug flow and annular flow via comparison with simultaneous video recordings.


Author(s):  
Manjinder Singh ◽  
Naresh Varma Datla ◽  
Supreet Singh Bahga ◽  
Sasidhar Kondaraju

Continuous increase in the integration density of microelectronic units necessitates the use of MHPs with enhanced thermal performance. Recently, the use of wettability gradients have been shown to enhance the heat transfer capacity of MHPs. In this paper, we present an optimization of axial wettability gradient to maximize the heat transfer capacity of the MHP. We use an experimentally validated mathematical model and interior point method to optimize the wettability gradient. For our analysis, we consider two cases wherein (i) the mass of working fluid is constrained, (ii) mass of working fluid is a design variable. Compared to MHP with uniform high wettability and filled with a fixed mass of working fluid, optimization of the wettability gradient leads to 65% enhancement in heat transfer capacity. Similar comparisons for MHP filled with variable mass of working fluid shows more than 90% increase in the maximum heat transfer capacity due to optimization of wettability gradient.


Author(s):  
Matevž Zupančič ◽  
Jure Voglar ◽  
Peter Gregorčič ◽  
Iztok Golobič ◽  
Peter Zakšek

Pool boiling experiments of water and ethanol-water binary mixtures were conducted on smooth and laser textured stainless steel foils. High-speed IR thermography was used to measure transient temperature field during boiling in order to determine nucleation frequencies, nucleation site densities, bubble activation temperatures, wall-temperature distributions and average superheats as well as heat transfer coefficients. Saturated pool boiling experiments were conducted at atmospheric pressure over a heat flux range of 5–250 kW m−2 for pure water and ethanol-water mixtures (1% and 10% m/m). For both mixtures and both types of surfaces we measured significant decrease in average heat transfer coefficient and increase in bubble activation temperatures in comparison to pure water. However, laser textured surface in average provided around 60% higher nucleation frequency and more than 100% higher nucleation site density compared to smooth surface for both of the tested binary mixtures. Consequentially, heat transfer coefficient was enhanced for more than 30%. Our results show that laser textured surfaces can improve boiling performance for water and ethanol-water mixtures, but at the same time the addition of ethanol reduces heat transfer coefficient despite the enhancement of nucleation site density and nucleation frequency. This is also in agreement with available experimental data and existing theoretical models.


Sign in / Sign up

Export Citation Format

Share Document