On the characteristics and mechanism of perturbation modes with asymptotic growth in trailing vortices

2021 ◽  
Vol 918 ◽  
Author(s):  
Siyi Qiu ◽  
Zepeng Cheng ◽  
Hui Xu ◽  
Yang Xiang ◽  
Hong Liu

Abstract

2014 ◽  
Vol 24 (1) ◽  
pp. 195-215
Author(s):  
JEFFREY GAITHER ◽  
GUY LOUCHARD ◽  
STEPHAN WAGNER ◽  
MARK DANIEL WARD

We analyse the first-order asymptotic growth of \[ a_{n}=\int_{0}^{1}\prod_{j=1}^{n}4\sin^{2}(\pi jx)\, dx. \] The integer an appears as the main term in a weighted average of the number of orbits in a particular quasihyperbolic automorphism of a 2n-torus, which has applications to ergodic and analytic number theory. The combinatorial structure of an is also of interest, as the ‘signed’ number of ways in which 0 can be represented as the sum of ϵjj for −n ≤ j ≤ n (with j ≠ 0), with ϵj ∈ {0, 1}. Our result answers a question of Thomas Ward (no relation to the fourth author) and confirms a conjecture of Robert Israel and Steven Finch.


1988 ◽  
Vol 32 (01) ◽  
pp. 80-81
Author(s):  
B. Yim

WHEN A finite span lifting wing is located in a uniform flow, trailing vortices are generated by the wing. It is well known from the Kelvin theorem that the trailing vortex strength is proportional to the spanwise slope of the bound vortex distribution. When the wing is located in a nonuniform flow, the problem becomes complex. Such flow has been dealt with by Vandry [1], 2 Karman and Tshen [2], Honda [8], and Smith [4]. It has been found that this flow has an extra trailing vortex created by the interaction between the nonuniform flow and the wing. This extra vortex is called the secondary vortex and has been studied extensively in connection with the theory of turbomachinery.


2015 ◽  
Vol 9 ◽  
pp. 6791-6803
Author(s):  
Athraa Neamah Albukhuttar ◽  
Xianwen Zhang

1965 ◽  
Vol 16 (3) ◽  
pp. 302-306 ◽  
Author(s):  
H. B. Squire

SummaryThe growth of a line vortex with time and the spread of a trailing vortex behind a wing due to turbulence are considered. It is shown that the eddy viscosity for this type of motion may be taken to be proportional to the circulation round the vortex and the solution is then similar to the solution for the growth of a vortex in laminar flow. The method is applied to calculate the distance behind a wing for which the trailing vortices will touch one another.


2013 ◽  
Vol 718 ◽  
pp. 39-88 ◽  
Author(s):  
Fazle Hussain ◽  
Eric Stout

AbstractWe study the mechanisms of centrifugal instability and its eventual self-limitation, as well as regenerative instability on a vortex column with a circulation overshoot (potentially unstable) via direct numerical simulations of the incompressible Navier–Stokes equations. The perturbation vorticity (${\boldsymbol{\omega} }^{\prime } $) dynamics are analysed in cylindrical ($r, \theta , z$) coordinates in the computationally accessible vortex Reynolds number, $\mathit{Re}({\equiv }\mathrm{circulation/viscosity} )$, range of 500–12 500, mostly for the axisymmetric mode (azimuthal wavenumber $m= 0$). Mean strain generates azimuthally oriented vorticity filaments (i.e. filaments with azimuthal vorticity, ${ \omega }_{\theta }^{\prime } $), producing positive Reynolds stress necessary for energy growth. This ${ \omega }_{\theta }^{\prime } $ in turn tilts negative mean axial vorticity, $- {\Omega }_{z} $ (associated with the overshoot), to amplify the filament, thus causing instability. (The initial energy growth rate (${\sigma }_{r} $), peak energy (${G}_{\mathit{max}} $) and time of peak energy (${T}_{p} $) are found to vary algebraically with $\mathit{Re}$.) Limitation of vorticity growth, also energy production, occurs as the filament moves the overshoot outward, hence lessening and shifting $\vert {- }{\Omega }_{z} \vert $, while also transporting the core $+ {\Omega }_{z} $, to the location of the filament. We discover that a basic change in overshoot decay behaviour from viscous to inviscid occurs at $Re\sim 5000$. We also find that the overshoot decay time has an asymptotic limit of 45 turnover times with increasing $\mathit{Re}$. After the limitation, the filament generates negative Reynolds stress, concomitant energy decay and hence self-limitation of growth; these inviscid effects are enhanced further by viscosity. In addition, the filament transports angular momentum radially inward, which can produce a new circulation overshoot and renewed instability. Energy decays at the $\mathit{Re}$ studied, but, at higher $\mathit{Re}$, regenerative growth of energy is likely due to the renewed mean shearing. New generation of overshoot and Reynolds stress is examined using a helical ($m= 1$) perturbation. Regenerative energy growth, possibly resulting in even vortex breakup, can be triggered by this new overshoot at practical $\mathit{Re}$ (${\sim }1{0}^{6} $ for trailing vortices), which are currently beyond the computational capability.


Author(s):  
Milan Banjac ◽  
Milan V. Petrovic ◽  
Alexander Wiedermann

This paper describes a new universal algebraic model for the estimation of flow deflection and losses in axial compressor inlet guide vane devices. The model deals with nominal flow and far-off-design operating conditions in connection with large stagger angle adjustments. The first part of the model considers deflection and losses in 2D cascades, taking into account the main cascade geometry parameters and operating conditions, such as Mach number and stagger adjustment. The second part of the model deals with additional deviation and losses due to secondary flow caused by the endwall viscous effects and by the trailing vortices. The model is developed for NACA65 airfoils, NACA63-A4K6 airfoils and airfoils having an NACA65 thickness distribution on a circular-arc camber line. It is suitable for application in 1D or 2D through-flow calculations for design and analysis cases. The development of the method is based on systematic CFD flow calculations for various cascade geometries and operating parameters. The comparison of correlation results with experimental data for several test cases shows good agreement.


Sign in / Sign up

Export Citation Format

Share Document