Oscillatory flow between concentric spheres driven by an electromagnetic force

2021 ◽  
Vol 920 ◽  
Author(s):  
Aldo Figueroa ◽  
Michel Rivero ◽  
José Núñez ◽  
Jaziel A. Rojas ◽  
Iván Rivera

Abstract




Author(s):  
Joseph A. Zasadzinski

At low weight fractions, many surfactant and biological amphiphiles form dispersions of lamellar liquid crystalline liposomes in water. Amphiphile molecules tend to align themselves in parallel bilayers which are free to bend. Bilayers must form closed surfaces to separate hydrophobic and hydrophilic domains completely. Continuum theory of liquid crystals requires that the constant spacing of bilayer surfaces be maintained except at singularities of no more than line extent. Maxwell demonstrated that only two types of closed surfaces can satisfy this constraint: concentric spheres and Dupin cyclides. Dupin cyclides (Figure 1) are parallel closed surfaces which have a conjugate ellipse (r1) and hyperbola (r2) as singularities in the bilayer spacing. Any straight line drawn from a point on the ellipse to a point on the hyperbola is normal to every surface it intersects (broken lines in Figure 1). A simple example, and limiting case, is a family of concentric tori (Figure 1b).To distinguish between the allowable arrangements, freeze fracture TEM micrographs of representative biological (L-α phosphotidylcholine: L-α PC) and surfactant (sodium heptylnonyl benzenesulfonate: SHBS)liposomes are compared to mathematically derived sections of Dupin cyclides and concentric spheres.



1994 ◽  
Vol 4 (4) ◽  
pp. 677-688 ◽  
Author(s):  
A. P. Krekhov ◽  
L. Kramer
Keyword(s):  


Author(s):  
Akiyuki Yonekawa ◽  
Toshinori Watanabe
Keyword(s):  


2008 ◽  
Vol 11 (5) ◽  
pp. 467-473
Author(s):  
Tasawar Hayat ◽  
F. Shahzad ◽  
S. Asghar


2003 ◽  
Vol 3 (1-2) ◽  
pp. 201-207
Author(s):  
H. Nagaoka ◽  
T. Nakano ◽  
D. Akimoto

The objective of this research is to investigate mass transfer mechanism in biofilms under oscillatory flow conditions. Numerical simulation of turbulence near a biofilm was conducted using the low Reynold’s number k-ɛ turbulence model. Substrate transfer in biofilms under oscillatory flow conditions was assumed to be carried out by turbulent diffusion caused by fluid movement and substrate concentration profile in biofilm was calculated. An experiment was carried out to measure velocity profile near a biofilm under oscillatory flow conditions and the influence of the turbulence on substrate uptake rate by the biofilm was also measured. Measured turbulence was in good agreement with the calculated one and the influence of the turbulence on the substrate uptake rate was well explained by the simulation.



Sign in / Sign up

Export Citation Format

Share Document