Evolution of forced magnetohydrodynamic waves in a stratified fluid

2021 ◽  
Vol 922 ◽  
Author(s):  
Binod Sreenivasan ◽  
Gaurav Maurya

Abstract

1994 ◽  
Vol 144 ◽  
pp. 503-505
Author(s):  
R. Erdélyi ◽  
M. Goossens ◽  
S. Poedts

AbstractThe stationary state of resonant absorption of linear, MHD waves in cylindrical magnetic flux tubes is studied in viscous, compressible MHD with a numerical code using finite element discretization. The full viscosity tensor with the five viscosity coefficients as given by Braginskii is included in the analysis. Our computations reproduce the absorption rates obtained by Lou in scalar viscous MHD and Goossens and Poedts in resistive MHD, which guarantee the numerical accuracy of the tensorial viscous MHD code.


1997 ◽  
Vol 335 ◽  
pp. 233-259 ◽  
Author(s):  
P. W. DUCK ◽  
M. R. FOSTER ◽  
R. E. HEWITT

In this paper we consider the boundary layer that forms on the sloping walls of a rotating container (notably a conical container), filled with a stratified fluid, when flow conditions are changed abruptly from some initial (uniform) state. The structure of the solution valid away from the cone apex is derived, and it is shown that a similarity-type solution is appropriate. This system, which is inherently nonlinear in nature, is solved numerically for several flow regimes, and the results reveal a number of interesting and diverse features.In one case, a steady state is attained at large times inside the boundary layer. In a second case, a finite-time singularity occurs, which is fully analysed. A third scenario involves a double boundary-layer structure developing at large times, most significantly including an outer region that grows in thickness as the square-root of time.We also consider directly the nonlinear fully steady solutions to the problem, and map out in parameter space the likely ultimate flow behaviour. Intriguingly, we find cases where, when the rotation rate of the container is equal to that of the main body of the fluid, an alternative nonlinear state is preferred, rather than the trivial (uniform) solution.Finally, utilizing Laplace transforms, we re-investigate the linear initial-value problem for small differential spin-up studied by MacCready & Rhines (1991), recovering the growing-layer solution they found. However, in contrast to earlier work, we find a critical value of the buoyancy parameter beyond which the solution grows exponentially in time, consistent with our nonlinear results.


2021 ◽  
Vol 62 (5) ◽  
Author(s):  
Kial D. Stewart ◽  
Callum J. Shakespeare ◽  
Yvan Dossmann ◽  
Andrew McC. Hogg

Sign in / Sign up

Export Citation Format

Share Document