Flow and heat transfer in a lid-driven cavity filled with a stably stratified fluid

1996 ◽  
Vol 22 ◽  
pp. 95
Author(s):  
A Mohamad
2002 ◽  
Vol 124 (6) ◽  
pp. 1056-1063 ◽  
Author(s):  
Xundan Shi ◽  
J. M. Khodadadi

A finite-volume-based computational study of steady laminar flow and heat transfer (neglecting natural convection) within a lid-driven square cavity due to a single thin fin is presented. The lid moves from left to right and a fixed thin fin can be positioned perpendicular to any of the three stationary walls. Three fins with lengths equal to 5, 10, and 15 percent of the side, positioned at 15 locations were examined for Re=500, 1000, 2000, and Pr=1 (total of 135 cases). Placing a fin on the right wall brings about multi-cell recirculating vortices compared to the case without a fin that exhibits a primary vortex and two small corner cells. A fin slows the flow near the anchoring wall and reduces the temperature gradients, thus degrading heat transfer capacity. A fin positioned near the top right corner of the cavity can reduce heat transfer most effectively in cases with all three different Reynolds numbers and lengths. Regardless of the Reynolds number, placing a fin on the right wall—compared to putting a fin on the left and bottom walls—can always enhance heat transfer on the left wall and at the same time, reduce heat transfer on the bottom, right and top walls. A long fin has the most marked effect on the system’s heat transfer capabilities. Mean Nusselt number was successfully correlated to the Reynolds number, length of the fin and its position.


2015 ◽  
Vol 789-790 ◽  
pp. 282-286 ◽  
Author(s):  
Khalil Khanafer ◽  
M. El Haj Assad

Mixed convection flow and heat transfer characteristics in a lid-driven cavity with two isothermally heated circular cylinders inside are studied numerically using a finite element formulation based on the Galerkin method of weighted residuals. The top lid of the cavity is moving rightwards with a constant speed. The two cylinders are maintained at an isothermal hot temperature, while the walls of the cavity are maintained at a cold temperature. Comparisons of streamlines, isotherms and average Nusselt number are presented to show the impact of the Richardson number, non-dimensional radius of the cylinder, and the location of the cylinders on the transport phenomena within the cavity. The results of this investigation show that the presence of the cylinders results in an increase in the average Nusselt number compared with a case with no cylinder. The average Nusselt number increases with an increase in the Richardson number for all non-dimensional radius of the cylinder studied in this work. It is seen that changing the boundary condition on one of the cylinders from isothermal to adiabatic has minimal effect on the average Nusselt number around the walls of the cavity.


2017 ◽  
Vol 31 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Khalil Khanafer ◽  
S. M. Aithal ◽  
Mamdouh E. Assad ◽  
Ioan Pop

2017 ◽  
Vol 16 (1) ◽  
Author(s):  
S.K. Farid ◽  
M. Sharif Uddin ◽  
M.M. Rahman ◽  
Yeo Wee Ping

In this paper, the influence of Joule heating and magneto-hydrodynamics on mixed convection in a lid-driven cavity along with a heated hollow circular plate placed at the centre of the square cavity is investigated. The governing equations which are derived by considering the effects of both Joule heating and magneto-hydrodynamics are solved via the penalty finite-element method with the Galerkin-weighted residual technique. The effects of the Richardson number and Hartmann number arising from the MHD and Joule heating on the flow and heat transfer characteristics have been examined. The results show that the flow behavior, temperature distribution and heat transfer inside the cavity are strongly affected by the presence of the magnetic field. On the other hand, only the temperature distribution and heat transfer inside the cavity are strongly affected by the Joule heating parameter. The results also show that if the Hartmann number is increased from 5 to 100 then the heat transfer detraction is 20%, and if the Joule heating parameter is increased from 1 to 5 then the heat transfer detraction is 58%. In addition, multiple regressions among the various parameters are obtained.


Sign in / Sign up

Export Citation Format

Share Document