surface manifestation
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 12)

H-INDEX

14
(FIVE YEARS 0)

Author(s):  
Daniel Lecoanet ◽  
Matteo Cantiello ◽  
Evan H Anders ◽  
Eliot Quataert ◽  
Louis-Alexandre Couston ◽  
...  

Abstract Recent photometric observations of massive stars show ubiquitous low-frequency ‘red-noise’ variability, which has been interpreted as internal gravity waves (IGWs). Simulations of IGWs generated by convection show smooth surface wave spectra, qualitatively matching the observed red-noise. Theoretical calculations using linear wave theory by Shiode et al (2013) and Lecoanet et al (2019) predict IGWs should manifest at the surface as regularly-spaced peaks associated with standing g-modes. In light of the apparent discrepancy between these theories and simulations/observations, we test the theories with simplified 2D numerical simulations of wave generation by convection. The simulations agree with the transfer function calculations presented in Lecoanet et al (2019), demonstrating that the transfer function correctly models linear wave propagation. However, there are differences between our simulations and the g-mode amplitude predictions of Shiode et al (2013). This is because that work did not take into account the finite width of the g-mode peaks; after correcting for this finite width, we again find good agreement between theory and simulations. This paper verifies the theoretical approach of Lecoanet et al (2019) and strengthens their conclusion that internal gravity waves generated by core convection do not have a surface manifestation consistent with observed low-frequency variability of massive stars.


2021 ◽  
Vol 9 ◽  
Author(s):  
Simone Colucci ◽  
Paolo Papale

Explosive eruptions are the surface manifestation of dynamics that involve transfer of magma from the underground regions of magma accumulation. Evidence of the involvement of compositionally different magmas from different reservoirs is continuously increasing to countless cases. Yet, models of eruption dynamics consider only the uppermost portion of the plumbing system, neglecting connections to deeper regions of magma storage. Here we show that the extent and efficiency of the interconnections between different magma storage regions largely control the size of the eruptions, their evolution, the causes of their termination, and ultimately their impact on the surrounding environment. Our numerical simulations first reproduce the magnitude-intensity relationship observed for explosive eruptions on Earth and explain the observed variable evolutions of eruption mass flow rates. Because deep magmatic interconnections are largely inaccessible to present-day imaging capabilities, our results motivate the need to better image and characterize extant magma bodies.


2021 ◽  
pp. 875529302199636
Author(s):  
Mertcan Geyin ◽  
Brett W Maurer ◽  
Brendon A Bradley ◽  
Russell A Green ◽  
Sjoerd van Ballegooy

Earthquakes occurring over the past decade in the Canterbury region of New Zealand have resulted in liquefaction case-history data of unprecedented quantity. This provides the profession with a unique opportunity to advance the prediction of liquefaction occurrence and consequences. Toward that end, this article presents a curated dataset containing ∼15,000 cone-penetration-test-based liquefaction case histories compiled from three earthquakes in Canterbury. The compiled, post-processed data are presented in a dense array structure, allowing researchers to easily access and analyze a wealth of information pertinent to free-field liquefaction response (i.e. triggering and surface manifestation). Research opportunities using these data include, but are not limited to, the training or testing of new and existing liquefaction-prediction models. The many methods used to obtain and process the case-history data are detailed herein, as is the structure of the compiled digital file. Finally, recommendations for analyzing the data are outlined, including nuances and limitations that users should carefully consider.


2021 ◽  
Author(s):  
Hatice Ünal Ercan ◽  
Ömer Işık Ece ◽  
Paul A. Schroeder ◽  
Fatma Gülmez

<p>There are many well-known geothermal systems linked to magmatic activity on Earth, many of which eventually express a surface manifestation of the below ground magmatism. The Oligo-Miocene was a period of very active magmatism that took place in Western Anatolia, where granitoidic plutons were emplaced within crust while calcalkaline to alkaline lavas and associated pyroclastics produced by volcanoes under the control of extensional tectonism. Progressive deformation of the crust due to the extension resulted since that time resulting in the development of a E/NE-W/SW trending fault system and of fracture zones that run perpendicular to main faults.</p><p>The mineralogical composition of the Hamamtepe and Muratdağı silica sinter deposits is comprised of kaolinite, alunite, and quartz. Microlithofacies of these deposits were defined as, i) massive, ii) laminated, iii) breccia, and iv) porous. δ<sup>18</sup>O stable isotope analysis on silicified rocks and δ<sup>34</sup>S with <sup>40</sup>Ar/<sup>39</sup>Ar radiometric age analysis on alunite minerals were performed with the aim of constraining the origin and timing of the silica deposits. We obtained results from δ<sup>18</sup>O ranging from 12.3 to 18.4 ‰, δ<sup>34</sup>S ranging from 9.2 and 16.6 ‰, and radiometric age analysis, which all suggest that the silica sinter deposits formed in a steam heated, low pH, oxidizing epithermal environments., coeval with prominent volcanic activity in the region.</p>


2021 ◽  
Vol 325 ◽  
pp. 01013
Author(s):  
Hasan Arif Efendi ◽  
Gayatri Indah Marliyani ◽  
Subagyo Pramumijoyo

We focused our study to characterize the geometry and activity of Gorontalo fault. We analysed reviewed the ISC seismic catalogue and the BMKG relocated earthquake events available for the time period of 1960 to 2021, located along the expected location of this fault. In addition, we analysed continuous record from local seismic observatory available for the same period. Further, we mapped the lineaments using 8.3-m resolution DEMNAS data. Tens on shallow earthquakes occurred in the vicinity of this fault with a range magnitude of M 2 to 3. Our lineament analysis however does not reveal distinctive pattern that may indicate the fault manifestation at the surface. The NW-SE trending lineaments are coincidence with the mapped trace of Gorontalo Fault. The weak surface manifestation of the fault scarp may be related to the tropical climatic condition of the area which may obliterate the faulting topography. However, we observed alignment of the seismicity distribution with the mapped NW-SE lineament, indicating that the lineament is likely representing active fault and these earthquakes are associated with faulting along this fault. Our study provide indication that the Gorontalo Fault is active and further study is necessary to investigate subsurface geometry and mitigate its seismic hazards.


Author(s):  
Chi-Yuen Wang ◽  
Michael Manga

AbstractGeysers, springs that intermittently erupt boiling water, appear to be especially sensitive to earthquakes. As they are a surface manifestation of geothermal systems, their response to earthquakes provides a window into how earthquakes change hydrothermal systems and processes. The most common approach to document responses to earthquakes is to identify changes in the interval between eruptions. Sustained changes in eruption intervals may be caused by changes in permeability. Confirming what processes lead to changes at geysers is hampered by limited reliable, quantitative multi-parameter data sets.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alessandro Meduri ◽  
Giovanni William Oliverio ◽  
Giuseppe Mancuso ◽  
Angela Giuffrida ◽  
Claudio Guarneri ◽  
...  

AbstractTo evaluate the ocular manifestation in patients hospitalized with coronavirus disease 2019 (COVID-19) and to search for the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in tears. This study was conducted in 29 hospitalized patients who were admitted to the COVID center at the Policlinic Hospital of the University of Messina, Italy. All patients underwent an ophthalmologic assessment comprising a Standardized Patient Evaluation of Eye Dryness (SPEED) questionnaire, anterior segment, and the ocular surface examination of both eyes using a portable slit lamp. The Schirmer I test was performed, and the filter paper strip was used to search for the presence of SARS-CoV-2 on the ocular surface by real-time quantitative polymerase chain reaction (RT-qPCR). A total of 10 patients reported ocular symptoms; in particular, four reported eye burning, three reported foreign body sensation, and three reported tearing. Moreover, seven patients presented conjunctival hyperemia and/or chemosis, eleven patients presented blepharitis signs such as lid margin hyperemia and/or telangiectasia, crusted eyelashes, and meibomian orifices alterations. Tear analysis did not reveal the presence of SARS-CoV-2. Ocular symptoms are common in patients with COVID-19; although, tear analysis did not reveal the presence of SARS-CoV-2.


Author(s):  
F H Tanjung ◽  
Dhianaufal ◽  
A U Rahmadhani ◽  
F M H Sihombing ◽  
D N Sahdarani ◽  
...  

2020 ◽  
Author(s):  
Alessandro Meduri ◽  
Giovanni William Oliverio ◽  
Giuseppe Mancuso ◽  
Angela Giuffrida ◽  
Claudio Guarneri ◽  
...  

Abstract Purpose: To evaluate the ocular manifestation in patients hospitalized with coronavirus disease 2019 (COVID-19) and to search for the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in tears.Methods: This study was conducted in 29 hospitalized patients who were admitted to the COVID center at the Policlinic Hospital of the University of Messina, Italy.All patients underwent an ophthalmologic assessment comprising a Standardized Patient Evaluation of Eye Dryness (SPEED) questionnaire, anterior segment, and the ocular surface examination of both eyes using a portable slit lamp.The Schirmer I test was performed, and the filter paper strip was used to search for the presence of SARS-CoV-2 on the ocular surface by real-time quantitative polymerase chain reaction (RT-qPCR).Results: A total of 10 patients reported ocular symptoms; in particular, four reported eye burning, three reported foreign body sensation, and three reported tearing. Moreover, seven patients presented conjunctival hyperemia and/or chemosis, eleven patients presented blepharitis signs such as lid margin hyperemia and/or telangiectasia, crusted eyelashes, and meibomian orifices alterations. Tear analysis did not reveal the presence of SARS-CoV-2.Conclusion: Ocular symptoms are common in patients with COVID-19; although, tear analysis did not reveal the presence of SARS-CoV-2.


2020 ◽  
Author(s):  
Gaétan Milesi ◽  
Patrick Monié ◽  
Philippe Münch ◽  
Roger Soliva ◽  
Audrey Taillefer ◽  
...  

Abstract. The Têt fault is a crustal scale major fault in the eastern Pyrenees along which 29 hot springs emerge mainly within the footwall damage zone of the fault. In this study, (U-Th)/He apatite (AHe) thermochronology is used in combination with REE analyses to investigate the imprint of hydrothermal activity nearby two main hot spring clusters and in between in an attempt to better define the geometry and intensity of the recent thermal anomalies along the fault and to compare them with previous results from numerical modelling. This study displays 99 new AHe ages and 63 REE analyses on samples collected in the hanging wall (18 to 43 Ma) and footwall (8 to 26 Ma) of the Têt fault. In the footwall, the results reveal AHe age resetting and apatite REE depletion due to hydrothermal circulation along the Têt fault damage zone, nearby the actual hot springs (Thuès-les-Bains and St-Thomas) but also in areas lacking actual geothermal surface manifestation. These age resetting and element depletions are more pronounced around Thuès-les-Bains hot spring cluster and are spatially restricted to a limited volume of the damage zone. Outside this damage zone, the modelling of thermochronological data in the footwall suggests the succession of two main phases of exhumation, between 30 and 24 Ma and a second one around 10 Ma. In the hanging wall, few evidences of hydrothermal imprint on AHe ages and REE signatures have been found and thermal modelling records a single exhumation phase at 35–30 Ma. Low-temperature thermochronology combined with REE analyses allows to identify the spatial distribution of a recent geothermal perturbation related to hydrothermal flow along a master fault zone in the eastern Pyrenees, opens new perspectives for the exploration of geothermal fields and provides at the regional scale new constraints on the tectonic uplift of the footwall and hanging wall massifs.


Sign in / Sign up

Export Citation Format

Share Document