scholarly journals Effect of finite Weissenberg number on turbulent channel flows of an elastoviscoplastic fluid

2021 ◽  
Vol 927 ◽  
Author(s):  
Daulet Izbassarov ◽  
Marco E. Rosti ◽  
Luca Brandt ◽  
Outi Tammisola

Direct numerical simulations are carried out to study the effect of finite Weissenberg number up to $Wi=16$ on laminar and turbulent channel flows of an elastoviscoplastic (EVP) fluid, at a fixed bulk Reynolds number of $2800$ . The incompressible flow equations are coupled with the evolution equation for the EVP stress tensor by a modified Saramito model that extends both the Bingham viscoplastic and the finite extensible nonlinear elastic-Peterlin (FENE-P) viscoelastic models. In turbulent flow, we find that drag decreases with both the Bingham and Weissenberg numbers, until the flow laminarises at high enough elastic and yield stresses. Hence, a higher drag reduction is achieved than in the viscoelastic flow at the same Weissenberg number. The drag reduction persists at Bingham numbers up to 20, in contrast to viscoplastic flow, where the drag increases in the laminar regime compared with a Newtonian flow. Moreover, elasticity affects the laminarisation of an EVP flow in a non-monotonic fashion, delaying it at lower and promoting it at higher Weissenberg numbers. A hibernation phenomenon is observed in the EVP flow, leading to large changes in the unyielded regions. Finally, plasticity is observed to affect both low- and high-speed streaks equally, attenuating the turbulent dissipation and the fragmentation of turbulent structures.

Author(s):  
Taiji TANAKA ◽  
Hyun Jin PARK ◽  
Yuji TASAKA ◽  
Yuichi MURAI ◽  
Chiharu KAWAKITA

2021 ◽  
Vol 239 ◽  
pp. 109909
Author(s):  
Taiji Tanaka ◽  
Yoshihiko Oishi ◽  
Hyun Jin Park ◽  
Yuji Tasaka ◽  
Yuichi Murai ◽  
...  

2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Xiao Xiong ◽  
Yan Zhang ◽  
Mohammad Azizur Rahman

Abstract Reynolds-averaged modeling is performed for polymer-induced drag reduction (DR) fluid at the fully developed turbulent regime in a concentric annulus by using the commercial code, ansys-fluent. The numerical approach adopted in this study relies on a modified k–ε–v2¯–f model to characterize the turbulence and the finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive model to represent the rheological behavior of the polymer solution. The near-wall axial velocity, Reynolds stress, and turbulent kinetic energy (TKE) budget near both walls of the annulus (fixed radius ratio of 0.4) are compared in detail at a constant Reynolds number (Re=10,587) and various rheological parameters (Weissenberg number We in the range of 1–7 and the maximum polymer elongation L = 30 and 100). Current simulation has predicted the redistributions of turbulent statistics in the annulus, where the two turbulent boundary layers (TBLs) of the DR flow differ more compared to those of its Newtonian counterpart. The difference is also found to be highly dependent on the rheological properties of the viscoelastic fluid.


2020 ◽  
Vol 36 (5) ◽  
pp. 691-698
Author(s):  
Che-Yu Lin ◽  
Chao-An Lin

ABSTRACTDirect numerical simulations have been applied to simulate flows with polymer additives. FENE-P (finite-extensible-nonlinear-elastic-Peterlin) dumbbell model solving for the conformation tensor is adopted to investigate the influence of the polymer on the flowfield. Boundary treatments of the conformation tensor on the flowfield are examined first, where boundary condition based on the linear extrapolation scheme provides more accurate results with second-order accurate error norms. Further simulations of the turbulent channel flow at different Weissenberg numbers are also conducted to investigate the influence on drag reduction. Drag reduction increases in tandem with the increase of Weissenberg number and the increase saturates at Weτ~200, where the drag reduction is close to the maximum drag reduction (MDR) limit. At the regime of y+ > 5, the viscous layer thickens with the increase of the Weissenberg number showing a departure from the traditional log-law profile, and the velocity profiles approach the MDR line at high Weissenberg number. The Reynolds stress decreases in tandem with the increase of Weτ, whereas the levels of laminar stress and polymer stress act adversely. However, as the Weissenberg number increases, the proportion of the laminar stress in the total stress increases, and this contributes to the drag reduction of the polymer flow.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
C. T. DeGroot ◽  
C. Wang ◽  
J. M. Floryan

Drag reduction in turbulent channel flows has significant practical relevance for energy savings. Various methods have been proposed to reduce turbulent skin friction, including microscale surface modifications such as riblets or superhydrophobic surfaces. More recently, macroscale surface modifications in the form of longitudinal grooves have been shown to reduce drag in laminar channel flows. The purpose of this study is to show that these grooves also reduce drag in turbulent channel flows and to quantify the drag reduction as a function of the groove parameters. Results are obtained using computational fluid dynamics (CFD) simulations with turbulence modeled by the k–ω shear-stress transport (SST) model, which is first validated with direct numerical simulations (DNS). Based on the CFD results, a reduced geometry model is proposed which shows that the approximate drag reduction can be quantified by evaluating the drag reduction of the geometry given by the first Fourier mode of an arbitrary groove geometry. Results are presented to show the drag reducing potential of grooves as a function of Reynolds number as well as groove wave number, amplitude, and shape. The mechanism of drag reduction is discussed, which is found to be due to a rearrangement of the bulk fluid motion into high-velocity streamtubes in the widest portion of the channel opening, resulting in a change in the wall shear stress profile.


2015 ◽  
Vol 75 ◽  
pp. 12-25 ◽  
Author(s):  
Hyun Jin Park ◽  
Yuji Tasaka ◽  
Yoshihiko Oishi ◽  
Yuichi Murai

Sign in / Sign up

Export Citation Format

Share Document