rheological parameters
Recently Published Documents


TOTAL DOCUMENTS

1104
(FIVE YEARS 442)

H-INDEX

37
(FIVE YEARS 7)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 614
Author(s):  
Ewa Kapeluszna ◽  
Łukasz Kotwica

The influence of grinding aids (pure triethanolamine and ethylene glycol) on the properties of cements, their compatibility with an acrylate-based superplasticizer and the rheological parameters of mortars were investigated. The presence of surfactants influences the standard properties of cements and the effectiveness of the superplasticizer. The results of the heat of hydration and setting time measurements indicate a delay in the hydration process and an increase in the induction period duration of the surfactant-doped pastes, in relation to the reference sample without grinding aids. Triethanolamine increases early-age compressive strength; the effect was observed for both standard and superplasticizer-containing mortars. The presence of grinding aids decreases the slump flow of mortars and increases rheological parameters such as yield stress (τ0) and viscosity (η).


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 554
Author(s):  
Juan He ◽  
Congmi Cheng ◽  
Xiaofen Zhu ◽  
Xiaosen Li

The effect of silica fume on the rheological properties of a cement–silica fume–high range water reducer–water mixture with ultra-low water binder ratio (CSHWM) was studied. The results indicate that the W/B ratio and silica fume content have different effects on the rheological parameters, including the yield stress, plastic viscosity, and hysteresis loop area. The shear-thickening influence of CSHWM decreased with the increased silica fume content. When the silica fume content increased from 0% to 35%, the mixture with W/B ratio of 0.19 and 0.23 changed from a dilatant fluid to a Newtonian fluid, and then to a pseudoplastic fluid. When the silica fume content was less than 15%, the yield stress was close to 0. With the increase of silica fume content, the yield stress increased rapidly. The plastic viscosity and hysteresis loop area decreased slightly with the addition of a small amount of silica fume, but increased significantly with the continuous increase of silica fume. Compared with the Bingham and modified Bingham models, the Herschel–Buckley model is more applicable for this CSHWM.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 428
Author(s):  
Kyong Ku Yun ◽  
Jong Beom Kim ◽  
Chang Seok Song ◽  
Mohammad Shakhawat Hossain ◽  
Seungyeon Han

There have been numerous studies on shotcrete based on strength and durability. However, few studies have been conducted on rheological characteristics, which are very important parameters for evaluating the pumpability and shootability of shotcrete. In those studies, silica fume has been generally used as a mineral admixture to simultaneously enhance the strength, durability, pumpability, and shootability of shotcrete. Silica fume is well-known to significantly increase the viscosity of a mixture and to prevent material sliding at the receiving surface when used in shotcrete mixtures. However, the use of silica fume in shotcrete increases the possibility of plastic shrinkage cracking owing to its very high fineness, and further, silica fume increases the cost of manufacturing the shotcrete mixture because of its cost and handling. Colloidal silica is a new material in which nano-silica is dispersed in water, and it could solve the above-mentioned problems. The purpose of this research is to develop high-performance shotcrete with appropriate levels of strength and workability as well as use colloidal silica for normal structures without a tunnel structure. Thereafter, the workability of shotcrete with colloidal silica (2, 3, and 4%) was evaluated with a particle size of 10 nm and silica fume replacement (4 and 7%) of cement. In this study, an air-entraining agent for producing high-performance shotcrete was also used. The rheological properties of fresh shotcrete mixtures were estimated using an ICAR rheometer and the measured rheological parameters such as flow resistance and torque viscosity were correlated with the workability and shootability. More appropriate results will be focusing on the Bingham model properties such that the main focus here is to compare all data using the Bingham model and its performance. The pumpability, shootability, and build-up thickness characteristics were also evaluated for the performance of the shotcrete. This research mainly focuses on the Bingham model for absolute value because it creates an exact linear line in a graphical analysis, which provides more appropriate results for measuring the shotcrete performance rather than ICAR rheometer relative data.


2022 ◽  
Vol 1048 ◽  
pp. 366-375
Author(s):  
Pavan Chandrasekar ◽  
Anjala Nourin ◽  
Addepalli Sri Naga Bhushana Aravind Gupta ◽  
Bavineni Venkata Jyoshna ◽  
Dhanya Sathyan

Abstract: Rheology is the science that concerns the flow of liquids, and the distortion of solids under an applied force. The study of the rheology of concrete determines the properties of fresh concrete. The rheological parameters are affected by temperature, stress conditions and several other factors. The main intention of this research is to model the rheological parameters of the fly ash incorporated cement with various types of superplasticizers exposed under different temperatures using an Artificial Neural Network. Test data were generated by performing rheological tests on cement paste at three distinct temperatures (15, 27, 35°C). Mixes were prepared using OPC, fly ash (15, 25, 35%) and superplasticizers of four different families. By conducting experiments, 252 data have been generated by modifying the combination of fly-ash, superplasticizer, and test temperature. Among the 252 data, 80% has been utilized for training and 20% is utilized for predicting the model’s accuracy. The input layer of the model consists of test temperature, the amount of fly ash replaced, cement and water content, and four different groups of superplasticizers. The cement paste’s yield stress was the output parameter of the model. The model generated data has been compared with the experimentally generated data to determine the accuracy of the model.Keywords: Rheology, Fly Ash, Superplasticizer, Temperature, ANN


Author(s):  
Elena Bezuglaya ◽  
Nikolay Lyapunov ◽  
Oleksii Lysokobylka ◽  
Oleksii Liapunov ◽  
Volodimir Klochkov ◽  
...  

The aim. Study of the interaction of surfactants with poloxamer 338 (P338) and the effect of P338 on the properties of cream bases. Materials and methods. Solutions of the surfactants and P338 as well as cream bases were under study. The average hydrodynamic diameter (Dh) and zeta potential (ζ‑potential) were determined by the light scattering intensity and electrophoretic mobility of micelles. The electron paramagnetic resonance (EPR) spectra of spin probes in micelles, solvents and bases were obtained; the type of spectrum, isotropic constant (AN), rotational correlation times (τ) and anisotropy parameter (ε) were determined. Liquids and cream bases were studied by capillary and rotational viscometry; the flow behaviour and yield stress (t0), dynamic and apparent viscosity (η) as well as the hysteresis (thixotropic) area (AH) were determined. The microstructure of the bases was examined by optical microscopy. The strength of adhesion (Sm) was assessed by the pull-off test, and the absorption of water was studied by dialysis. Results. Under the impact of P338 the hydrodynamic diameters of micelles formed by cationic, anionic and nonionic surfactants decreased as well as the absolute values of their ζ‑potential became lower, but the microviscosity of the micelle nuclei increased. There was also a change in the structure of the aggregates of surfactant with fatty alcohols; EPR spectra, which were superpositions characteristic for the lateral phase separation, converted into triplets that indicated the uniform distribution of lipophilic probes in the surfactant phase. When the content of P338 increased to 17 %, the rheological parameters of the bases increased drastically, the flow behaviour and the microstructure changed. The bases had the consistency of cream within temperature range from 25 °C to 70 °C and completely restored their apparent viscosity, which had decreased under shear stress. P338 enhances the adhesive properties of the bases. Due to their microstructure, cream bases have a lower ability to absorb water compared to a solution and gel containing 17 % and 20 % P338, respectively. Conclusions. The structure of surfactant micelles and aggregates of surfactants with fatty alcohols changed under impact of P338 due to the interaction of surfactants with P338. As a result of this interaction, at a sufficiently high concentration of P338, the microstructure and flow behaviour of bases changed, their rheological parameters, which remain high at temperatures from 25 °C to 70 °C, increased significantly, and water absorption parameters decreased. The bases with P338 were more adhesive


2021 ◽  
pp. 67-72
Author(s):  
E. N. Shabolkina ◽  
N. V. Anisimkina

The development of bakery industry is possible due to the use of such non-traditional raw materials as durum wheat. The purpose of the current study was to estimate the effect of varietal traits of durum wheat when mixed with bread wheat according to the results of rheological parameters of dough, technological and bakery estimation of flour. There have been studied technological indicators of grain, rheological and physical parameters of dough, general bakery estimation. There has been established that the high gas-forming ability of durum wheat allows it to be used (30%) as bread wheat improver during baking. However, the positive effect was present not in all years of the study. There has been estimated an improvement effect due to mutual compensation of the missing components and complementarity of the bread and durum wheat varieties. There was found that in 2008, 2010 there was practically no improvement effect when durum wheat flour was added to the mixture in a ratio of 30:70%. There was established that in 2015 the maximum bread volume of 930 cm3 and a good bakery estimation (flat surface, oval shape, golden brown crust, as well as fine thin-walled porosity with elastic light crumb) were obtained by adding bread wheat varieties to durum wheat varieties, which during the year of the study there was formed weak grain (dilute of dough was 110 u.f.; valorigraphic number was 46 u.v.). In 2020, the varieties used in the mixtures of both spring bread and durum wheat were of high quality, and bakery estimation gave excellent indicators both in the control (the variety ‘Tulaykovskaya 108’ with 1300 cm3) and in the mixtures with 1140–1255 cm3; the appearance of bread and crumb in almost all variants had an excellent mark. The largest volume of bread, 1255 cm3, was obtained when the durum wheat variety ‘Bezenchukskaya Niva’ was added to the mixture. Adding durum wheat flour to the mixture in an amount of 30:70% when baking bread reduced its staleness by 6.5% relative to the control (bread wheat); bread remains fresh for a long time with an elastic, quickly regenerated crumb.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 90
Author(s):  
Hengrui Liu ◽  
Xiao Sun ◽  
Yao Wang ◽  
Xueying Lu ◽  
Hui Du ◽  
...  

In this study, the rheology, fluidity, stability, and time-varying properties of cement paste with different substitute contents of silica fume (SF) were investigated. The result showed that the effects of SF on macro-fluidity and micro-rheological properties were different under different water–cement ratios. The addition of SF increased the yield stress and plastic viscosity in the range of 2.61–18.44% and 6.66–24.66%, respectively, and reduced the flow expansion in the range of 4.15–18.91%. The effect of SF on cement paste gradually lost its regularity as the w/c ratio increased. The SF can effectively improve the stability of cement paste, and the reduction range of bleeding rate was 0.25–4.3% under different water–cement ratios. The mathematical models of rheological parameters, flow expansion, and time followed the following equations: τ(t) = τ0 + k0t, η(t) = η0eat, and L(t) = L0 − k1t, L(t) = L0 − k1t − a1t2. The SF slowly increased the rheological parameters in the initial time period and reduced the degree of fluidity attenuation, but the effect was significantly enhanced after entering the accelerated hydration period. The mechanism of the above results was that SF mainly affected the fluidity and rheology of the paste through the effect of water film thickness. The small density of SF particles resulted in a low sedimentation rate in the initial suspended paste, which effectively alleviated the internal particle agglomeration effect and enhanced stability. The SF had a dilution effect and nucleation effect during hydration acceleration, and the increase of hydration products effectively increased the plastic viscosity.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 19
Author(s):  
Chiara Tozzi ◽  
Davide Dalmazzo ◽  
Orazio Baglieri ◽  
Ezio Santagata

The research described in this paper deals with the experimental evaluation and modeling of physical hardening in asphalt binders. The term physical hardening refers to a reversible phenomenon occurring at low temperatures that causes time-dependent changes in viscoelastic properties. The experimental approach, followed to quantitatively assess physical hardening, was based on flexural creep tests carried out by means of the Bending Beam Rheometer at various temperatures and conditioning times. The results obtained confirmed that hardening phenomena have a significant influence on the creep response of asphalt binders, to an extent that can be quantitatively assessed by referring to the appropriate rheological parameters and by applying the loading time–conditioning time superposition principle. The experimental data were fitted to a mechanical model proposed in the literature (composed of a single Kelvin–Voigt element) and thereafter to an improved model (with two Kelvin–Voigt elements in series). Both models were assessed in terms of their prediction accuracy. The improved model was found to better describe physical hardening effects in the case of both short- and long-term conditioning. Practical implications of the study were finally highlighted by referring to possible ranking criteria to be introduced in acceptance procedures for the comparative evaluation of asphalt binders.


2021 ◽  
Vol 6 (12) ◽  
pp. 183
Author(s):  
Abhirup B. Roy-Chowdhury ◽  
Mofreh F. Saleh ◽  
Miguel Moyers-Gonzalez

Permanent deformation or rutting is a major mode of failure in Hot Mix Asphalt (HMA) pavements. The binder used in the asphalt mixture plays an important role in the rutting resistance performance of the mixture. Currently, the Superpave rutting parameter and a more advanced test called multiple stress creep and recovery (MSCR) are the most widely used tests for rutting characterisation of asphalt binders. However, they both have their own merits and demerits. This study was undertaken to introduce a combined Elastic-Plastic (CEP) parameter as an additional binder rheological rutting parameters. The study also aimed at investigating the applicability and potential of this parameter to supplement the existing binder rheological parameters to characterise the properties of asphalt binder related to HMA rutting performance. Additionally, the correlations of the binder rheological parameters with the asphalt mix rutting parameters generated by the dynamic creep and the dynamic modulus tests were investigated. For the polymer-modified binders, Styrene-Butadiene-Styrene (SBS) was added to the PG 70-16 binder at two concentration levels (4, and 6% by the mass of the binder). A dense-graded HMA AC 14 was tested in the Dynamic Modulus (DM) and Dynamic Creep (DC) tests for evaluating the rutting performance. The CEP parameter was found to be much more reliable than the traditional G*/sin (δ) and the non-recoverable creep compliance (Jnr) parameters for evaluating the rutting behaviour of polymer modified asphalt binders, evident from better correlations of CEP with the asphalt mix performance. Unlike Jnr, the CEP parameter revealed a wider range of values, which is comparable with asphalt mixture test results.


Sign in / Sign up

Export Citation Format

Share Document