frictional drag
Recently Published Documents


TOTAL DOCUMENTS

272
(FIVE YEARS 61)

H-INDEX

30
(FIVE YEARS 3)

Author(s):  
S Sindagi ◽  
R Vijayakumar ◽  
B K Saxena

The reduction of ship’s resistance is one of the most effective way to reduce emissions, operating costs and to improve EEDI. It is reported that, for slow moving vessels, the frictional drag accounts for as much as 80% of the total drag, thus there is a strong demand for the reduction in the frictional drag. The use of air as a lubricant, known as Micro Bubble Drag Reduction, to reduce that frictional drag is an active research topic. The main focus of authors is to present the current scenario of research carried out worldwide along with numerical simulation of air injection in a rectangular channel. Latest developments in this field suggests that, there is a potential reduction of 80% & 30% reduction in frictional drag in case of flat plates and ships respectively. Review suggests that, MBDR depends on Gas or Air Diffusion which depends on, Bubble size distributions and coalescence and surface tension of liquid, which in turn depends on salinity of water, void fraction, location of injection points, depth of water in which bubbles are injected. Authors are of opinion that, Microbubbles affect the performance of Propeller, which in turn decides net savings in power considering power required to inject Microbubbles. Moreover, 3D numerical investigations into frictional drag reduction by microbubbles were carried out in Star CCM+ on a channel for different flow velocities, different void fraction and for different cross sections of flow at the injection point. This study is the first of its kind in which, variation of coefficient of friction both in longitudinal as well as spanwise direction were studied along with actual localised variation of void fraction at these points. From the study, it is concluded that, since it is a channel flow and as the flow is restricted in confined region, effect of air injection is limited to smaller area in spanwise direction as bubbles were not escaping in spanwise direction.


Author(s):  
K I Matveev

Air ventilation of submerged surfaces of ship hulls is a promising technique for drag reduction. To ensure high performance of air cavities in a broad range of operational conditions, the cavity properties can be controlled with help of compact hydrodynamic actuators. In this study, a potential flow theory is applied to model an air cavity formed behind a wedge-shaped cavitator under a horizontal wall imitating a ship bottom. By varying the wedge angle, it is possible to achieve states with maximum drag reduction at given operational conditions. The dependence of the optimal wedge angle on Froude number and hull trim is investigated. The air-cavity ability to reduce frictional drag is found to increase with rising flow speed and bow-down hull trim.


2021 ◽  
Author(s):  
◽  
Hannah Robinson

<p>Marine biofouling is the accumulation of biological material (e.g. microorganisms, soft- and hard-fouling organisms) on the surface of an object submerged in seawater, and it remains a worldwide problem for shipping industries. The fouling of ship hulls results in a reduction of speed and manoeuvrability due to frictional drag, as well as increased fuel consumption and accelerated corrosion, and the exorbitant expenses and losses of efficiency attributed to biofouling have prompted the development of antifouling coatings. Current antifouling paints use copper as a biocidal agent, but copper-based paints are increasingly being banned due to environmental concerns about the non-target effects of leached copper. This project aims to circumvent these concerns and tightening regulations via a revolutionary concept: the development of marine antifouling paints that incorporate Cu(II)-selective ligands to draw the biocidal ingredient (i.e. Cu(II)) from seawater. A multistage strategy emerged for the development of this technology. First, criteria were established for the project’s ideal ligand, and ligands were synthesised or selected based on these criteria. Second, the ligands were incorporated in coatings through covalent modification of the paint binder or additives. Third, methodology was developed and implemented to test each coating’s ability to coordinate and retain Cu(II), as well as its subsequent ability to prevent microfouling by marine bacteria.   The suitability of two ligand classes was assessed: acylhydrazones and tetraaza macrocycles, specifically cyclen. Unlike the acylhydrazones, cyclen met the established criteria and was initially evaluated as a curing agent and/or surface-modifier in a two-pack epoxy system with resin Epikote™ 235. However, the Cu(II)-loading by these coatings was relatively low, being at most ~0.05% w/w, and the modification of silica, a common paint additive, with cyclen was explored as an alternative formulation route. The method for the functionalisation of silica with cyclen was optimised, and the maximum Cu(II)-loading achieved by the product was 2.60% w/w. The cyclen-functionalised silica was incorporated on the surface of an epoxy coating, and a bacterial adherence assay was developed to assess the cellular attachment of marine bacterium Vibrio harveyi to this coating, which was found to be undeterred. Yet, the development of the strategy and testing methodology by which the project’s goals may be achieved provides a solid foundation for future work.</p>


2021 ◽  
Author(s):  
◽  
Hannah Robinson

<p>Marine biofouling is the accumulation of biological material (e.g. microorganisms, soft- and hard-fouling organisms) on the surface of an object submerged in seawater, and it remains a worldwide problem for shipping industries. The fouling of ship hulls results in a reduction of speed and manoeuvrability due to frictional drag, as well as increased fuel consumption and accelerated corrosion, and the exorbitant expenses and losses of efficiency attributed to biofouling have prompted the development of antifouling coatings. Current antifouling paints use copper as a biocidal agent, but copper-based paints are increasingly being banned due to environmental concerns about the non-target effects of leached copper. This project aims to circumvent these concerns and tightening regulations via a revolutionary concept: the development of marine antifouling paints that incorporate Cu(II)-selective ligands to draw the biocidal ingredient (i.e. Cu(II)) from seawater. A multistage strategy emerged for the development of this technology. First, criteria were established for the project’s ideal ligand, and ligands were synthesised or selected based on these criteria. Second, the ligands were incorporated in coatings through covalent modification of the paint binder or additives. Third, methodology was developed and implemented to test each coating’s ability to coordinate and retain Cu(II), as well as its subsequent ability to prevent microfouling by marine bacteria.   The suitability of two ligand classes was assessed: acylhydrazones and tetraaza macrocycles, specifically cyclen. Unlike the acylhydrazones, cyclen met the established criteria and was initially evaluated as a curing agent and/or surface-modifier in a two-pack epoxy system with resin Epikote™ 235. However, the Cu(II)-loading by these coatings was relatively low, being at most ~0.05% w/w, and the modification of silica, a common paint additive, with cyclen was explored as an alternative formulation route. The method for the functionalisation of silica with cyclen was optimised, and the maximum Cu(II)-loading achieved by the product was 2.60% w/w. The cyclen-functionalised silica was incorporated on the surface of an epoxy coating, and a bacterial adherence assay was developed to assess the cellular attachment of marine bacterium Vibrio harveyi to this coating, which was found to be undeterred. Yet, the development of the strategy and testing methodology by which the project’s goals may be achieved provides a solid foundation for future work.</p>


2021 ◽  
Author(s):  
Kadarkaraithangam Jeyasubramanian ◽  
Silambu Selvan Paranibramma Nayagi ◽  
Gnanadhas Sobhin Osannal Hikku

Surface frictional drag developed by marine vessels utilizes a considerable percentage of fuel for propulsion. Superhydrophobic (SH) surface normally traps a layer of air at the interface and significantly reduces the surface frictional drag. Herein, the efficacy of the SH coating towards the surface drag reduction of the sailing boat is recognized by conducting a facile experiment where the bottom of the toy boat is coated with SH additives. AlNiCo nanoparticles and nickel stearate prepared by ball-milling and co-precipitation methods respectively are drop-casted layer by layer over the surface of the toy boat to impart SH. The fuel efficiency of the SH boat is improved by 51.49% substantiating the reduction in surface drag of the vessel. Further, the trapped air provides extra buoyancy force, enhancing the load-bearing capability of the SH boat by 5.77%.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jianqiang Lu ◽  
Meilong Fu ◽  
Liu Xu ◽  
Qian Huang ◽  
Yan Zheng

Nowadays, there are a wide variety of thickeners developed for dry CO2 fracturing worldwide, but numerous problems remain during in situ testing. To address problems in CO2 fracturing fluid operation (high frictional drag, low viscosity, low proppant-carrying capacity, narrow reservoir fractures, etc.), the authors have synthesized the novel hydrophobic long-chain ester thickener, studied viscosity, frictional drag, and proppant-carrying capacity of CO2 fracturing fluid and core damage by CO2 fracturing fluid by varying the temperature, pressure, and level of injection of the novel thickener and explored the thickening mechanism for this thickener in CO2. Based on the study results, as the temperature, pressure, and amount of injected thickener increased, fracturing fluid viscosity increased steadily. In the case of shearing for 125 min under conditions of 170 S−1, 40°C, and 20 MPa, when the thickener level increased from 1% to 2%, fracturing fluid viscosity increased and then decreased, varying within 50–150 mPa·s, and the viscosity-enhancing effect was evident; under conditions of 20°C and 12 MPa, as the flow rate increased, drag reduction efficiency reached 78.3% and the minimal proppant settling speed was 0.09 m/s; under conditions of 40°C and 20 MPa, drag reduction efficiency reached 77.4% and the proppant settling speed was 0.08 m/s; with the increases in temperature, pressure, and injection amount, core damage rates of the thickener varied within 1.77%–2.88%, indicating that basically no damage occurred. This study is of significant importance to the development of CO2 viscosity enhancers and CO2 fracturing operation.


2021 ◽  
Vol 921 (2) ◽  
pp. 174
Author(s):  
Nicholas G. Zube ◽  
Xi Zhang ◽  
Tao Li ◽  
Tianhao Le ◽  
Cheng Li ◽  
...  

Abstract We present a two-dimensional radiative-dynamical model of the combined stratosphere and upper troposphere of Jupiter to understand its temperature distribution and meridional circulation pattern. Our study highlights the importance of radiative and mechanical forcing for driving the middle atmospheric circulation on Jupiter. Our model adopts a state-of-the-art radiative transfer scheme with recent observations of Jovian gas abundances and haze distribution. Assuming local radiative equilibrium, latitudinal variation of hydrocarbon abundances is not able to explain the observed latitudinal temperature variations in the mid-latitudes. With mechanical forcing parameterized as a frictional drag on zonal wind, our model produces ∼2 K latitudinal temperature variations observed in low to mid-latitudes in the troposphere and lower stratosphere, but cannot reproduce the observed 5 K temperature variations in the middle stratosphere. In the high latitudes, temperature and meridional circulation depend strongly on polar haze radiation. The simulated residual mean circulation shows either two broad equator-to-pole cells or multi-cell patterns, depending on the frictional drag timescale and polar haze properties. A more realistic wave parameterization and a better observational characterization of haze distribution and optical properties are needed to better understand latitudinal temperature distributions and circulation patterns in the middle atmosphere of Jupiter.


2021 ◽  
Vol 239 ◽  
pp. 109909
Author(s):  
Taiji Tanaka ◽  
Yoshihiko Oishi ◽  
Hyun Jin Park ◽  
Yuji Tasaka ◽  
Yuichi Murai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document