scholarly journals Mass transfer from small spheroids suspended in a turbulent fluid

2021 ◽  
Vol 929 ◽  
Author(s):  
John M. Lawson ◽  
Bharathram Ganapathisubramani

By coupling direct numerical simulation of homogeneous isotropic turbulence with a localised solution of the convection–diffusion equation, we model the rate of transfer of a solute (mass transfer) from the surface of small, neutrally buoyant, axisymmetric, ellipsoidal particles (spheroids) in dilute suspension within a turbulent fluid at large Péclet number, $\textit {Pe}$ . We observe that, at $\textit {Pe} = O(10)$ , the average transfer rate for prolate spheroids is larger than that of spheres with equivalent surface area, whereas oblate spheroids experience a lower average transfer rate. However, as the Péclet number is increased, oblate spheroids can experience an enhancement in mass transfer relative to spheres near an optimal aspect ratio $\lambda \approx 1/4$ . Furthermore, we observe that, for spherical particles, the Sherwood number $\textit {Sh}$ scales approximately as $\textit {Pe}^{0.26}$ over $\textit {Pe} = 1.4\times 10^{1}$ to $1.4\times 10^{4}$ , which is below the $\textit {Pe}^{1/3}$ scaling observed for inertial particles but consistent with available experimental data for tracer-like particles. The discrepancy is attributed to the diffusion-limited temporal response of the concentration boundary layer to turbulent strain fluctuations. A simple model, the quasi-steady flux model, captures both of these phenomena and shows good quantitative agreement with our numerical simulations.

2009 ◽  
Vol 283-286 ◽  
pp. 553-558
Author(s):  
João M.P.Q. Delgado ◽  
M. Vázquez da Silva

The present work describes the mass transfer process between a moving fluid and a slightly soluble flat surface buried in a packed bed of small inert particles with uniform voidage, by both advection and diffusion. Numerical solutions of the differential equation describing solute mass conservation were undertaken to obtain the concentration profiles, for each concentration level, the width and downstream length of the corresponding contour surface and the mass transfer flux was integrated to give the Sherwood number as a function of Peclet number. A mathematical expression that relates the dependence with the Peclet number is proposed to describe the approximate size of the diffusion wake downstream of the reactive solid mass.


1989 ◽  
Vol 111 (2) ◽  
pp. 257-263 ◽  
Author(s):  
A. Bejan

This paper addresses the fundamentals of the phenomenon of steady heat transfer by rolling contact between two bodies at different temperatures. The contact region is modeled according to the classical Hertz theory, by which the bodies undergo elastic deformation and the contact area has the shape of an ellipse. In the first part of the study it is shown that when the two bodies make contact continuously over the elliptical area, the overall heat transfer rate is proportional to the square root of the Peclet number based on the ellipse semiaxis parallel to the tangential (rolling) velocity. In the same case the heat transfer rate increases as the square root of the normal force (F) between the two bodies. The second part of the study treats the case when the rolling contact is made through a large number of asperities (contact sites) distributed over the elliptical contact area. The heat transfer rate is again proportional to the square root of the Peclet number. When the asperities are distributed randomly, the heat transfer rate increases as F5/6. In the case of regularly distributed asperities that undergo elastic deformation, the heat transfer rate is proportional to F13/18. The high Peclet number domain covered by this study is discussed in the closing section of the paper.


1977 ◽  
Vol 12 (2) ◽  
pp. 218-226 ◽  
Author(s):  
Yu. P. Gupalo ◽  
A. D. Polyanin ◽  
Yu. S. Ryazantsev

Sign in / Sign up

Export Citation Format

Share Document