oblate spheroids
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 30)

H-INDEX

21
(FIVE YEARS 2)

Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 586
Author(s):  
Aneesh Vincent Veluthandath ◽  
Ganapathy Senthil Murugan

Photonic nanojet (PNJ) is a tightly focused diffractionless travelling beam generated by dielectric microparticles. The location of the PNJ depends on the refractive index of the material and it usually recedes to the interior of the microparticle when the refractive index is higher than 2, making high index materials unsuitable to produce useful PNJs while high index favours narrower PNJs. Here we demonstrate a design of CMOS compatible high index on-chip photonic nanojet based on silicon. The proposed design consists of a silicon hemisphere on a silicon substrate. The PNJs generated can be tuned by changing the radius and sphericity of the hemisphere. Oblate spheroids generate PNJs further away from the refracting surface and the PNJ length exceeds 17𝜆 when the sphericity of the spheroid is 2.25 The proposed device can have potential applications in focal plane arrays, enhanced Raman spectroscopy, and optofluidic chips.


2021 ◽  
Vol 922 (2) ◽  
pp. 267
Author(s):  
Scott G. Carlsten ◽  
Jenny E. Greene ◽  
Johnny P. Greco ◽  
Rachael L. Beaton ◽  
Erin Kado-Fong

Abstract The structure of a dwarf galaxy is an important probe of the effects of stellar feedback and environment. Using an unprecedented sample of 223 low-mass satellites from the ongoing Exploration of Local Volume Satellites survey, we explore the structures of dwarf satellites in the mass range 105.5 < M ⋆ < 108.5 M ⊙. We survey satellites around 80% of the massive, M K < − 22.4 mag, hosts in the Local Volume (LV). Our sample of dwarf satellites is complete to luminosities of M V <−9 mag and surface brightness μ 0,V < 26.5 mag arcsec−2 within at least ∼200 projected kpc of the hosts. For this sample, we find a median satellite luminosity of M V = −12.4 mag, median size of r e = 560 pc, median ellipticity of ϵ = 0.30, and median Sérsic index of n = 0.72. We separate the satellites into late- and early-type (29.6% and 70.4%, respectively). The mass–size relations are very similar between them within ∼5%, which indicates that the quenching and transformation of a late-type dwarf into an early-type one involves only very mild size evolution. Considering the distribution of apparent ellipticities, we infer the intrinsic shapes of the early- and late-type samples. Combining with literature samples, we find that both types of dwarfs are described roughly as oblate spheroids that get more spherical at fainter luminosities, but early-types are always rounder at fixed luminosity. Finally, we compare the LV satellites with dwarf samples from the cores of the Virgo and Fornax clusters. We find that the cluster satellites show similar scaling relations to the LV early-type dwarfs but are roughly 10% larger at fixed mass, which we interpret as being due to tidal heating in the cluster environments. The dwarf structure results presented here are a useful reference for simulations of dwarf galaxy formation and the transformation of dwarf irregulars into spheroidals.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1563
Author(s):  
Sayahnya Roy ◽  
Alexei Sentchev ◽  
Marc Fourmentin ◽  
Patrick Augustin

Reynolds stress anisotropy is estimated from the stress spheroids, based on 20 Hz ultrasonic anemometer measurements, performed in the coastal area of northern France, over a 1.5-year long period. Size and shape variation (i.e., prolate, oblate, disk, rod, etc.) of stress spheroids are used for the characterization of energy redistribution by turbulent eddies. The sea-breeze (SB) events were identified using a change in wind direction from seaward (SWD) to landward (LWD) during the day time. We found that the LWD wind creates more turbulent anisotropic states than SWD wind. The prolate-shaped stress spheroids correspond to small-scale turbulence observed during LWD wind, while oblate spheroids are found during SWD winds. Moreover, it was found that during LWD winds, large turbulence kinetic energy (TKE) in the flow field produces large stress spheroids. On the contrary, during SWD winds, a smaller level of TKE is responsible for small-size stress spheroid formation. The average volume of the corresponding Reynolds stress spheroids during the LWD is 13% larger than that of during SWD wind.


2021 ◽  
Vol 929 ◽  
Author(s):  
John M. Lawson ◽  
Bharathram Ganapathisubramani

By coupling direct numerical simulation of homogeneous isotropic turbulence with a localised solution of the convection–diffusion equation, we model the rate of transfer of a solute (mass transfer) from the surface of small, neutrally buoyant, axisymmetric, ellipsoidal particles (spheroids) in dilute suspension within a turbulent fluid at large Péclet number, $\textit {Pe}$ . We observe that, at $\textit {Pe} = O(10)$ , the average transfer rate for prolate spheroids is larger than that of spheres with equivalent surface area, whereas oblate spheroids experience a lower average transfer rate. However, as the Péclet number is increased, oblate spheroids can experience an enhancement in mass transfer relative to spheres near an optimal aspect ratio $\lambda \approx 1/4$ . Furthermore, we observe that, for spherical particles, the Sherwood number $\textit {Sh}$ scales approximately as $\textit {Pe}^{0.26}$ over $\textit {Pe} = 1.4\times 10^{1}$ to $1.4\times 10^{4}$ , which is below the $\textit {Pe}^{1/3}$ scaling observed for inertial particles but consistent with available experimental data for tracer-like particles. The discrepancy is attributed to the diffusion-limited temporal response of the concentration boundary layer to turbulent strain fluctuations. A simple model, the quasi-steady flux model, captures both of these phenomena and shows good quantitative agreement with our numerical simulations.


2021 ◽  
Vol 2 (1) ◽  
pp. 26-29
Author(s):  
Dmitry Petrov ◽  
Elena Zhuzhulina ◽  
Alexander Savushkin

Silicate dust particles are part of many astronomical objects such as comets and circumstellar disks. In a spectrum, silicates exhibit a number of characteristic silicate emission features. To study these features, Mie’s theory is usually used. This theory assumes that the scattering object is an ideal sphere. In this work, we investigated the contribution of non-spherical quartz particles (SiO2) to these features. We studied the influence of the deviation from sphericity on the 10-micron silicate feature of quartz. It is shown that the deviation from sphericity has a significant effect on both the scattered light intensity and the scattering factor Qsca, and this effect increases with increasing scattering particle size. The main peculiarities of the 10-micron silicate feature have been studied for both prolate and oblate spheroids.


2021 ◽  
Vol 926 ◽  
Author(s):  
J. Bagge ◽  
T. Rosén ◽  
F. Lundell ◽  
A.-K. Tornberg

Understanding particle drift in suspension flows is of the highest importance in numerous engineering applications where particles need to be separated and filtered out from the suspending fluid. Commonly known drift mechanisms such as the Magnus force, Saffman force and Segré–Silberberg effect all arise only due to inertia of the fluid, with similar effects on all non-spherical particle shapes. In this work, we present a new shape-selective lateral drift mechanism, arising from particle inertia rather than fluid inertia, for ellipsoidal particles in a parabolic velocity profile. We show that the new drift is caused by an intermittent tumbling rotational motion in the local shear flow together with translational inertia of the particle, while rotational inertia is negligible. We find that the drift is maximal when particle inertial forces are of approximately the same order of magnitude as viscous forces, and that both extremely light and extremely heavy particles have negligible drift. Furthermore, since tumbling motion is not a stable rotational state for inertial oblate spheroids (nor for spheres), this new drift only applies to prolate spheroids or tri-axial ellipsoids. Finally, the drift is compared with the effect of gravity acting in the directions parallel and normal to the flow. The new drift mechanism is stronger than gravitational effects as long as gravity is less than a critical value. The critical gravity is highest (i.e. the new drift mechanism dominates over gravitationally induced drift mechanisms) when gravity acts parallel to the flow and the particles are small.


2021 ◽  
pp. 47-62
Author(s):  
David Rickard

The original idea that framboids were generally spherical was due to the limitations of the contemporary optical microscopic methods. Later scanning microscopic investigations showed that many framboids were at least partly faceted and some display polygonal icosahedral forms. This is significant since the assumption of framboid sphericity informed earlier explanations of how they could form. It cannot be assumed, for example, that framboids necessarily require a precursor template, such as a spherical space or spherical organic globule, to develop. There is a continuum in original framboid shapes between ellipsoid, oblate spheroids, prolate spheroids, and spheroids. Irregularly curved shapes are common, especially in clusters of framboids, and result from deformation under the influence of gravity, analogous to soft sediment deformation. Framboidal icosahedra have varying triangular faces and are similar to the pseudo-icosahedral habit of pyrite macrocrystals. Framboids with mixtures of curved and faceted faces are common and these may result in part by local organized internal microcrystal domains. Various framboid clusters have been described as polyframboids, but the term is strictly reserved to spherical clusters of framboids. The constituent framboids may number 100–200 in these polyframboids, and they commonly show evidence of soft-sediment deformation.


2021 ◽  
Author(s):  
Jagadish Singh ◽  
Shitu Muktar Ahmad

Abstract This paper studies the position and stability of equilibrium points in the circular restricted three-body problem (CR3BP) under the influence of small perturbations in the Coriolis and centrifugal forces when the primaries are radiating and heterogeneous oblate spheroids. It is seen that there exist five libration points as in the classical restricted three-body problem, three collinear Li(i=1,2,3) and two triangular Li(i= 4,5). It is also seen that the triangular points are no longer to form equilateral triangles with the primaries rather they form simple triangles with line joining the primaries. It is further observed that despite all perturbations the collinear points remain unstable while the triangular points are stable for 0 < µ < µc and unstable for µc ≤ µ ≤ ½, where µc is the critical mass ratio depending upon aforementioned parameters. It is marked that small perturbation in the Coriolis force, radiation and heterogeneous oblateness of the both primaries have destabilizing tendencies. Their numerical examination is also performed.


2021 ◽  
Author(s):  
Nicholas J. Rommelfanger ◽  
Zihao Ou ◽  
Carl H.C. Keck ◽  
Guosong Hong

Nanoparticles with strong absorption of incident radio frequency (RF) or microwave irradiation are desirable for remote hyperthermia treatments. While controversy has surrounded the absorption properties of spherical metallic nanoparticles, other geometries such as prolate and oblate spheroids have not received sufficient attention for application in hyperthermia therapies. Here, we use the electrostatic approximation to calculate the relative absorption ratio of metallic nanoparticles in various biological tissues. We consider a broad parameter space, sweeping across frequencies from 1 MHz to 10 GHz, while also tuning the nanoparticle dimensions from spheres to high-aspect-ratio spheroids approximating nanowires and nanodiscs. We find that while spherical metallic nanoparticles do not offer differential heating in tissue, large absorption cross sections can be obtained from long prolate spheroids, while thin oblate spheroids offer minor potential for absorption. Our results suggest that metallic nanowires should be considered for RF- and microwave-based wireless hyperthermia treatments in many tissues going forward.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 224
Author(s):  
Yi Zhou ◽  
Yang Yang ◽  
Changxing Zhu ◽  
Mingyuan Yang ◽  
Yi Hu

Thermophoresis of charged colloids in aqueous media has wide applications in biology. Most existing studies of thermophoresis focused on spherical particles, but biological compounds are usually non-spherical. The present paper reports a numerical analysis of the thermophoresis of a charged spheroidal colloid in aqueous media. The model accounts for the strongly coupled temperature field, the flow field, the electric potential field, and the ion concentration field. Numerical simulations revealed that prolate spheroids move faster than spherical particles, and oblate spheroids move slower than spherical particles. For the arbitrary electric double layer (EDL) thickness, the thermodiffusion coefficient of prolate (oblate) spheroids increases (decreases) with the increasing particle’s dimension ratio between the major and minor semiaxes. For the extremely thin EDL case, the hydrodynamic effect is significant, and the thermodiffusion coefficient for prolate (oblate) spheroids converges to a fixed value with the increasing particle’s dimension ratio. For the extremely thick EDL case, the particle curvature’s effect also becomes important, and the increasing (decreasing) rate of thermodiffusion coefficient for prolate (oblate) spheroids is reduced slightly.


Sign in / Sign up

Export Citation Format

Share Document