Optimal allocation of relevations in coherent systems

2021 ◽  
Vol 58 (4) ◽  
pp. 1152-1169
Author(s):  
Rongfang Yan ◽  
Jiandong Zhang ◽  
Yiying Zhang

AbstractIn this paper we study the allocation problem of relevations in coherent systems. The optimal allocation strategies are obtained by implementing stochastic comparisons of different policies according to the usual stochastic order and the hazard rate order. As special cases of relevations, the load-sharing and minimal repair policies are further investigated. Sufficient (and necessary) conditions are established for various stochastic orderings. Numerical examples are also presented as illustrations.

2012 ◽  
Vol 26 (2) ◽  
pp. 159-182 ◽  
Author(s):  
Peng Zhao ◽  
N. Balakrishnan

In this paper, we carry out stochastic comparisons of largest order statistics from multiple-outlier exponential models according to the likelihood ratio order (reversed hazard rate order) and the hazard rate order (usual stochastic order). It is proved, among others, that the weak majorization order between the two hazard rate vectors is equivalent to the likelihood ratio order (reversed hazard rate order) between largest order statistics, and that the p-larger order between the two hazard rate vectors is equivalent to the hazard rate order (usual stochastic order) between largest order statistics. We also extend these results to the proportional hazard rate models. The results established here strengthen and generalize some of the results known in the literature.


2017 ◽  
Vol 33 (1) ◽  
pp. 28-49
Author(s):  
Narayanaswamy Balakrishnan ◽  
Jianbin Chen ◽  
Yiying Zhang ◽  
Peng Zhao

In this paper, we discuss the ordering properties of sample ranges arising from multiple-outlier exponential and proportional hazard rate (PHR) models. The purpose of this paper is twofold. First, sufficient conditions on the parameter vectors are provided for the reversed hazard rate order and the usual stochastic order between the sample ranges arising from multiple-outlier exponential models with common sample size. Next, stochastic comparisons are separately carried out for sample ranges arising from multiple-outlier exponential and PHR models with different sample sizes as well as different hazard rates. Some numerical examples are also presented to illustrate the results established here.


2012 ◽  
Vol 26 (3) ◽  
pp. 375-391 ◽  
Author(s):  
Baojun Du ◽  
Peng Zhao ◽  
N. Balakrishnan

In this paper, we study some stochastic comparisons of the maxima in two multiple-outlier geometric samples based on the likelihood ratio order, hazard rate order, and usual stochastic order. We establish a sufficient condition on parameter vectors for the likelihood ratio ordering to hold. For the special case whenn= 2, it is proved that thep-larger order between the two parameter vectors is equivalent to the hazard rate order as well as usual stochastic order between the two maxima. Some numerical examples are presented for illustrating the established results.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 470 ◽  
Author(s):  
Junrui Wang ◽  
Rongfang Yan ◽  
Bin Lu

This paper deals with stochastic comparisons of two parallel (series) systems with Type II half logistic-resilience scale (TIIHL-RS) distribution components with different baseline distribution functions. Under the conditions of interdependency and independency, the research shows that the system performance is better (worse) with the stronger component heterogeneity in the parallel (series) system under the usual stochastic order and the (reversed) hazard rate order.


Author(s):  
Bin Lu ◽  
Jiandong Zhang ◽  
Rongfang Yan

Abstract This paper studies the optimal allocation policy of a coherent system with independent heterogeneous components and dependent subsystems, the systems are assumed to consist of two groups of components whose lifetimes follow proportional hazard (PH) or proportional reversed hazard (PRH) models. We investigate the optimal allocation strategy by finding out the number $k$ of components coming from Group A in the up-series system. First, some sufficient conditions are provided in the sense of the usual stochastic order to compare the lifetimes of two-parallel–series systems with dependent subsystems, and we obtain the hazard rate and reversed hazard rate orders when two subsystems have independent lifetimes. Second, similar results are also obtained for two-series–parallel systems under certain conditions. Finally, we generalize the corresponding results to parallel–series and series–parallel systems with multiple subsystems in the viewpoint of the minimal path and the minimal cut sets, respectively. Some numerical examples are presented to illustrate the theoretical findings.


2017 ◽  
Vol 54 (1) ◽  
pp. 134-145 ◽  
Author(s):  
Miguel A. Sordo ◽  
Georgios Psarrakos

AbstractWe provide some results for the comparison of the failure times and interfailure times of two systems based on a replacement policy proposed by Kapodistria and Psarrakos (2012). In particular, we show that when the first failure times are ordered in terms of the dispersive order (or, the excess wealth order), then the successive interfailure times are ordered in terms of the usual stochastic order (respectively, the increasing convex order). As a consequence, we provide comparison results for the cumulative residual entropies of the systems and their dynamic versions.


2021 ◽  
Vol 37 ◽  
pp. 359-369
Author(s):  
Marko Kostadinov

The aim of this paper is to provide sufficient and necessary conditions under which the linear combination $\alpha A + \beta B$, for given operators $A,B \in {\cal B}({\cal H})$ and $\alpha, \beta \in \mathbb{C}\setminus \lbrace 0 \rbrace$, is injective. Using these results, necessary and sufficient conditions for left (right) invertibility are given. Some special cases will be studied as well.


2015 ◽  
Vol 13 (05) ◽  
pp. 507-553 ◽  
Author(s):  
Wen Yuan ◽  
Dorothee D. Haroske ◽  
Leszek Skrzypczak ◽  
Dachun Yang

In this paper, we consider the embeddings of weighted Besov spaces [Formula: see text] into Besov-type spaces [Formula: see text] with w being a (local) Muckenhoupt weight, and give sufficient and necessary conditions on the continuity and the compactness of these embeddings. As special cases, we characterize the continuity and the compactness of embeddings in case of some polynomial or exponential weights. The proofs of these conclusions strongly depend on the geometric properties of dyadic cubes.


2015 ◽  
Vol 52 (04) ◽  
pp. 1183-1186 ◽  
Author(s):  
Maria Kamińska-Zabierowska ◽  
Jorge Navarro

We have found a mistake in the proofs of Navarro (2008, Theorem 2.3(b) and 2.3(c)) due to misapplication of properties of hazard rate and likelihood ratio orders. In this paper we show with an example that the stated results do not hold. This example is interesting since it proves some unexpected properties for these orderings under the formation of coherent systems. The result stated in Navarro (2008, Theorem 2.3(a)) for the usual stochastic order is correct.


2010 ◽  
Vol 47 (1) ◽  
pp. 254-263 ◽  
Author(s):  
Xiaohu Li ◽  
Weiyong Ding

In this note we deal with the allocation of independent and identical active redundancies to a k-out-of-n system with the usual stochastic order among its independent components. The optimal policy is proved both to assign more redundancies to the weaker component and to majorize all other policies. This improves the corresponding one in Hu and Wang (2009) and serves as a nice supplement to that in Misra, Dhariyal and Gupta (2009) as well.


Sign in / Sign up

Export Citation Format

Share Document