ON THE SET-THEORETIC STRENGTH OF ELLIS’ THEOREM AND THE EXISTENCE OF FREE IDEMPOTENT ULTRAFILTERS ON ω

2018 ◽  
Vol 83 (2) ◽  
pp. 551-571
Author(s):  
ELEFTHERIOS TACHTSIS

AbstractEllis’ Theorem (i.e., “every compact Hausdorff right topological semigroup has an idempotent element”) is known to be proved only under the assumption of the full Axiom of Choice (AC); AC is used in the proof in the disguise of Zorn’s Lemma.In this article, we prove that in ZF, Ellis’ Theorem follows from the Boolean Prime Ideal Theorem (BPI), and hence is strictly weaker than AC in ZF. In fact, we establish that BPI implies the formally stronger (than Ellis’ Theorem) statement “for every family ${\cal A} = \{ ({S_i},{ \cdot _i},{{\cal T}_i}):i \in I\}$ of nontrivial compact Hausdorff right topological semigroups, there exists a function f with domain I such that $f\left( i \right)$ is an idempotent of ${S_i}$, for all $i \in I$”, which in turn implies ACfin (i.e., AC for sets of nonempty finite sets).Furthermore, we prove that in ZFA, the Axiom of Multiple Choice (MC) implies Ellis’ Theorem for abelian semigroups (i.e., “every compact Hausdorff right topological abelian semigroup has an idempotent element”) and that the strictly weaker than MC (in ZFA) principle LW (i.e., “every linearly ordered set can be well-ordered”) implies Ellis’ Theorem for linearly orderable semigroups (i.e., “every compact Hausdorff right topological linearly orderable semigroup has an idempotent element”); thus the latter formally weaker versions of Ellis’ Theorem are strictly weaker than BPI in ZFA. Yet, it is shown that no choice is required in order to prove Ellis’ Theorem for well-orderable semigroups.We also show that each one of the (strictly weaker than AC) statements “the Tychonoff product $2^{\Cal R} $ is compact and Loeb” and $BPI_{\Cal R}$ (BPI for filters on ${\Cal R}$) implies “there exists a free idempotent ultrafilter on ω” (which in turn is not provable in ZF). Moreover, we prove that the latter statement does not imply $BP{I_\omega }$ (BPI for filters on ω) in ZF, hence it does not imply any of $AC_{\Cal R} $ (AC for sets of nonempty sets of reals) and $BPI_{\Cal R} $ in ZF, either.In addition, we prove that the statements “there exists a free ultrafilter on ω”, “there exists a free ultrafilter on ω which is not idempotent”, and “for every IP set $A \subseteq \omega$, there exists a free ultrafilter ${\cal F}$ on ω such that $A \in {\cal F}$” are pairwise equivalent in ZF.

2016 ◽  
Vol 81 (2) ◽  
pp. 463-482 ◽  
Author(s):  
EKATERINA FOKINA ◽  
BAKHADYR KHOUSSAINOV ◽  
PAVEL SEMUKHIN ◽  
DANIEL TURETSKY

AbstractLetEbe a computably enumerable (c.e.) equivalence relation on the setωof natural numbers. We say that the quotient set$\omega /E$(or equivalently, the relationE)realizesa linearly ordered set${\cal L}$if there exists a c.e. relation ⊴ respectingEsuch that the induced structure ($\omega /E$; ⊴) is isomorphic to${\cal L}$. Thus, one can consider the class of all linearly ordered sets that are realized by$\omega /E$; formally,${\cal K}\left( E \right) = \left\{ {{\cal L}\,|\,{\rm{the}}\,{\rm{order}}\, - \,{\rm{type}}\,{\cal L}\,{\rm{is}}\,{\rm{realized}}\,{\rm{by}}\,E} \right\}$. In this paper we study the relationship between computability-theoretic properties ofEand algebraic properties of linearly ordered sets realized byE. One can also define the following pre-order$ \le _{lo} $on the class of all c.e. equivalence relations:$E_1 \le _{lo} E_2 $if every linear order realized byE1is also realized byE2. Following the tradition of computability theory, thelo-degrees are the classes of equivalence relations induced by the pre-order$ \le _{lo} $. We study the partially ordered set oflo-degrees. For instance, we construct various chains and anti-chains and show the existence of a maximal element among thelo-degrees.


1997 ◽  
Vol 62 (2) ◽  
pp. 438-456 ◽  
Author(s):  
David Pincus

AbstractLet DO denote the principle: Every infinite set has a dense linear ordering. DO is compared to other ordering principles such as O, the Linear Ordering principle, KW, the Kinna-Wagner Principle, and PI, the Prime Ideal Theorem, in ZF, Zermelo-Fraenkel set theory without AC, the Axiom of Choice.The main result is:Theorem. AC ⇒ KW ⇒ DO ⇒ O, and none of the implications is reversible in ZF + PI.The first and third implications and their irreversibilities were known. The middle one is new. Along the way other results of interest are established. O, while not quite implying DO, does imply that every set differs finitely from a densely ordered set. The independence result for ZF is reduced to one for Fraenkel-Mostowski models by showing that DO falls into two of the known classes of statements automatically transferable from Fraenkel-Mostowski to ZF models. Finally, the proof of PI in the Fraenkel-Mostowski model leads naturally to versions of the Ramsey and Ehrenfeucht-Mostowski theorems involving sets that are both ordered and colored.


1995 ◽  
Vol 38 (2) ◽  
pp. 223-229
Author(s):  
John Lindsay Orr

AbstractA linearly ordered set A is said to shuffle into another linearly ordered set B if there is an order preserving surjection A —> B such that the preimage of each member of a cofinite subset of B has an arbitrary pre-defined finite cardinality. We show that every countable linearly ordered set shuffles into itself. This leads to consequences on transformations of subsets of the real numbers by order preserving maps.


2017 ◽  
Vol 96 (3) ◽  
pp. 479-486 ◽  
Author(s):  
RADOSŁAW ŁUKASIK

We present the form of the solutions $f:S\rightarrow \mathbb{C}$ of the functional equation $$\begin{eqnarray}\mathop{\sum }_{\unicode[STIX]{x1D706}\in K}f(x+\unicode[STIX]{x1D706}y)=|K|f(x)f(y)\quad \text{for }x,y\in S,\end{eqnarray}$$ where $f$ satisfies the condition $f(\sum _{\unicode[STIX]{x1D706}\in K}\unicode[STIX]{x1D706}x)\neq 0$ for all $x\in S$, $(S,+)$ is an abelian semigroup and $K$ is a subgroup of the automorphism group of $S$.


1971 ◽  
Vol 23 (2) ◽  
pp. 271-281 ◽  
Author(s):  
Murray A. Marshall

Let k be a local field; that is, a complete discrete-valued field having a perfect residue class field. If L is a finite Galois extension of k then L is also a local field. Let G denote the Galois group GL|k. Then the nth ramification group Gn is defined bywhere OL, denotes the ring of integers of L, and PL is the prime ideal of OL. The ramification groups form a descending chain of invariant subgroups of G:1In this paper, an attempt is made to characterize (in terms of the arithmetic of k) the ramification filters (1) obtained from abelian extensions L\k.


1968 ◽  
Vol 20 ◽  
pp. 264-271 ◽  
Author(s):  
Takayuki Tamura

Let Q be a quasi-ordered set with respect to ⩽ ; that is, the order ⩽ is reflexive and transitive. An element a of Q is called maximal (minimal) ifa is called greatest (smallest) ifObviously a greatest (smallest) element is maximal (minimal). A greatest (smallest) element in a partially ordered set is unique, but it is not necessarily unique in a quasi-ordered set.


Sign in / Sign up

Export Citation Format

Share Document