right topological semigroup
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

2018 ◽  
Vol 83 (2) ◽  
pp. 551-571
Author(s):  
ELEFTHERIOS TACHTSIS

AbstractEllis’ Theorem (i.e., “every compact Hausdorff right topological semigroup has an idempotent element”) is known to be proved only under the assumption of the full Axiom of Choice (AC); AC is used in the proof in the disguise of Zorn’s Lemma.In this article, we prove that in ZF, Ellis’ Theorem follows from the Boolean Prime Ideal Theorem (BPI), and hence is strictly weaker than AC in ZF. In fact, we establish that BPI implies the formally stronger (than Ellis’ Theorem) statement “for every family ${\cal A} = \{ ({S_i},{ \cdot _i},{{\cal T}_i}):i \in I\}$ of nontrivial compact Hausdorff right topological semigroups, there exists a function f with domain I such that $f\left( i \right)$ is an idempotent of ${S_i}$, for all $i \in I$”, which in turn implies ACfin (i.e., AC for sets of nonempty finite sets).Furthermore, we prove that in ZFA, the Axiom of Multiple Choice (MC) implies Ellis’ Theorem for abelian semigroups (i.e., “every compact Hausdorff right topological abelian semigroup has an idempotent element”) and that the strictly weaker than MC (in ZFA) principle LW (i.e., “every linearly ordered set can be well-ordered”) implies Ellis’ Theorem for linearly orderable semigroups (i.e., “every compact Hausdorff right topological linearly orderable semigroup has an idempotent element”); thus the latter formally weaker versions of Ellis’ Theorem are strictly weaker than BPI in ZFA. Yet, it is shown that no choice is required in order to prove Ellis’ Theorem for well-orderable semigroups.We also show that each one of the (strictly weaker than AC) statements “the Tychonoff product $2^{\Cal R} $ is compact and Loeb” and $BPI_{\Cal R}$ (BPI for filters on ${\Cal R}$) implies “there exists a free idempotent ultrafilter on ω” (which in turn is not provable in ZF). Moreover, we prove that the latter statement does not imply $BP{I_\omega }$ (BPI for filters on ω) in ZF, hence it does not imply any of $AC_{\Cal R} $ (AC for sets of nonempty sets of reals) and $BPI_{\Cal R} $ in ZF, either.In addition, we prove that the statements “there exists a free ultrafilter on ω”, “there exists a free ultrafilter on ω which is not idempotent”, and “for every IP set $A \subseteq \omega$, there exists a free ultrafilter ${\cal F}$ on ω such that $A \in {\cal F}$” are pairwise equivalent in ZF.


2014 ◽  
Vol 23 (2) ◽  
pp. 131-136
Author(s):  
ABDOL MOHAMMAD AMINPOUR ◽  
◽  
MEHRDAD SEILANI ◽  

This paper presents an important new technique for studying a particular compact semigroup, N∪{∞}, the one-point compactification of positive integers with usual addition, which is an important semigroup. Indeed, the semigroup N ∪ {∞} is constructed as the quotient semigroup of a particular compact right topological semigroup. In the study of such a semigroup, a major role is played by the substructures called standard oids. For instance, some of the already known results on the structure of N ∪ {∞} are obtained as immediate consequences.


1995 ◽  
Vol 18 (3) ◽  
pp. 497-500
Author(s):  
R. D. Pandian

Quasiminimal distal function on a semitopological semigroup is introduced. The concept of right topological semigroup compactification is employed to study the algebra of quasiminimal distal functions. The universal mapping property of the quasiminimal distal compactification is obtained.


1994 ◽  
Vol 116 (2) ◽  
pp. 317-323
Author(s):  
Ahmed El-Mabhouh

It is well-known that the structure of βℕ, the Stone—Čech compactification of the discrete semigroup (ℕ, +), is very complex. For example, it has 2c minimal left ideals and 2c minimal right ideals, its minimal ideal contains 2c copies of the free group on 2c generators, see [5], and Lisan[8] proved the existence of 2c copies of the same group outside the closure of the minimal ideal.


1993 ◽  
Vol 113 (3) ◽  
pp. 507-517 ◽  
Author(s):  
J. W. Baker ◽  
A. T. Lau

Let G be a locally compact group and let UG denote the spectrum of the C*-algebra LUC(G) of bounded left uniformly continuous complex-valued functions on G, with the Gelfand topology. Then there is a multiplication on UG extending the multiplication on G (when naturally embedded in UG) such that UG is a semigroup and for each x ∈ UG, the map y ↦ yx from UG into UG is continuous, i.e. UG is a compact right topological semigroup. Consequently UG has a unique minimal ideal K which is the union of minimal (closed) left ideals UG. Furthermore K is the union of the set of maximal subgroups of K (see [3], theorem 3·ll).


Author(s):  
D. J. Parsons

If S is an infinite, discrete, commutative semigroup then the semigroup algebra l1(S) is a commutative Banach algebra. Its dual is l∞(S), which is isometrically iso-morphic to C(βS), the space of continuous functions on the Stone-Čech compactification of S. This fact enables us to identify the second dual of l1(S) with M(βS), the space of bounded regular Borel measures on βS. Endowed with the Arens product the second dual is also a Banach algebra, so it is natural to ask whether a product may be defined in M(βS) without reference to l1(S). In §4 this is shown to be possible even when S is a non-discrete semitopological semigroup, provided that the operation in S may be extended to make βS into a left-topological semigroup in the manner of, for example, [2] where further references may be found. (Note, however, that the construction there is of a right-topological semigroup.) Having done this we may use results on βS to provide information about the measure algebra.


Sign in / Sign up

Export Citation Format

Share Document