scholarly journals AN ELEMENTARY PROOF OF A THEOREM BY MATSUMOTO

2016 ◽  
Vol 227 ◽  
pp. 77-85 ◽  
Author(s):  
LUIS HERNÁNDEZ-CORBATO

Matsumoto proved in, [Prime end rotation numbers of invariant separating continua of annular homeomorphisms, Proc. Amer. Math. Soc. 140(3) (2012), 839–845.] that the prime end rotation numbers associated to an invariant annular continuum are contained in its rotation set. An alternative proof of this fact using only simple planar topology is presented.

1986 ◽  
Vol 6 (2) ◽  
pp. 205-239 ◽  
Author(s):  
Kevin Hockett ◽  
Philip Holmes

AbstractWe investigate the implications of transverse homoclinic orbits to fixed points in dissipative diffeomorphisms of the annulus. We first recover a result due to Aronsonet al.[3]: that certain such ‘rotary’ orbits imply the existence of an interval of rotation numbers in the rotation set of the diffeomorphism. Our proof differs from theirs in that we use embeddings of the Smale [61] horseshoe construction, rather than shadowing and pseudo orbits. The symbolic dynamics associated with the non-wandering Cantor set of the horseshoe is then used to prove the existence of uncountably many invariant Cantor sets (Cantori) of each irrational rotation number in the interval, some of which are shown to be ‘dissipative’ analogues of the order preserving Aubry-Mather Cantor sets found by variational methods in area preserving twist maps. We then apply our results to the Josephson junction equation, checking the necessary hypotheses via Melnikov's method, and give a partial characterization of the attracting set of the Poincaré map for this equation. This provides a concrete example of a ‘Birkhoff attractor’ [10].


2011 ◽  
Vol 48 (4) ◽  
pp. 540-562
Author(s):  
Lee Goswick ◽  
Nándor Simányi

Traditionally, rotation numbers for toroidal billiard flows are defined as the limiting vectors of average displacements per time on trajectory segments. Naturally, these creatures live in the (commutative) vector space ℝn, if the toroidal billiard is given on the flatn-torus. The billiard trajectories, being curves, often getting very close to closed loops, quite naturally define elements of the fundamental group of the billiard table. The simplest non-trivial fundamental group obtained this way belongs to the classical Sinai billiard, i.e. the billiard flow on the 2-torus with a single, strictly convex obstacle (with smooth boundary) removed. This fundamental group is known to be the groupF2freely generated by two elements, which is a heavily noncommutative, hyperbolic group in Gromov’s sense. We define the homotopical rotation number and the homotopical rotation set for this model, and provide lower and upper estimates for the latter one, along with checking the validity of classically expected properties, like the density (in the homotopical rotation set) of the homotopical rotation numbers of periodic orbits.The natural habitat for these objects is the infinite cone erected upon the Cantor set Ends (F2) of all ŋds" of the hyperbolic groupF2. An element of Ends (F2) describes the direction in (the Cayley graph of) the groupF2in which the considered trajectory escapes to infinity, whereas the height functiont(t≧ 0) of the cone gives us the average speed at which this escape takes place.The main results of this paper claim that the orbits can only escape to infinity at a speed not exceeding\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\sqrt 2 $ \end{document}, and any directione∈ Ends (F2) for the escape is feasible with any prescribed speeds, 0 ≦s≦\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\sqrt 2 $ \end{document}/2. This means that the radial upper and lower bounds for the rotation setRare actually pretty close to each other.


1991 ◽  
Vol 11 (4) ◽  
pp. 619-631 ◽  
Author(s):  
Marcy Barge ◽  
Richard M. Gillette

AbstractWe prove that ifFis an orientation-preserving homeomorphism of the plane that leaves invariant a continuum Λ which irreducibly separates the plane into exactly two domains, then the convex hull of the rotation set ofFrestricted to Λ is a closed interval and each reduced rational in this interval is the rotation number of a periodic orbit in Λ. We also show that the interior and exterior rotation numbers ofFassociated with Λ are contained in the convex hull of the rotation set ofFrestricted to Λ and that if this set is nondegenerate then Λ is an indecomposable continuum.


1991 ◽  
Vol 11 (3) ◽  
pp. 356-360 ◽  
Author(s):  
Jia'an Yan
Keyword(s):  

2020 ◽  
Vol 26 ◽  
pp. 121
Author(s):  
Dongbing Zha ◽  
Weimin Peng

For the Cauchy problem of nonlinear elastic wave equations for 3D isotropic, homogeneous and hyperelastic materials with null conditions, global existence of classical solutions with small initial data was proved in R. Agemi (Invent. Math. 142 (2000) 225–250) and T. C. Sideris (Ann. Math. 151 (2000) 849–874) independently. In this paper, we will give some remarks and an alternative proof for it. First, we give the explicit variational structure of nonlinear elastic waves. Thus we can identify whether materials satisfy the null condition by checking the stored energy function directly. Furthermore, by some careful analyses on the nonlinear structure, we show that the Helmholtz projection, which is usually considered to be ill-suited for nonlinear analysis, can be in fact used to show the global existence result. We also improve the amount of Sobolev regularity of initial data, which seems optimal in the framework of classical solutions.


1926 ◽  
Vol 2 (3) ◽  
pp. 97-99
Author(s):  
Matsusaburô Fujiwara
Keyword(s):  

2020 ◽  
pp. 1-13
Author(s):  
SEBASTIÁN PAVEZ-MOLINA

Abstract Let $(X,T)$ be a topological dynamical system. Given a continuous vector-valued function $F \in C(X, \mathbb {R}^{d})$ called a potential, we define its rotation set $R(F)$ as the set of integrals of F with respect to all T-invariant probability measures, which is a convex body of $\mathbb {R}^{d}$ . In this paper we study the geometry of rotation sets. We prove that if T is a non-uniquely ergodic topological dynamical system with a dense set of periodic measures, then the map $R(\cdot )$ is open with respect to the uniform topologies. As a consequence, we obtain that the rotation set of a generic potential is strictly convex and has $C^{1}$ boundary. Furthermore, we prove that the map $R(\cdot )$ is surjective, extending a result of Kucherenko and Wolf.


Sign in / Sign up

Export Citation Format

Share Document