ANALYTIC PROPERTIES OF EISENSTEIN SERIES AND STANDARD -FUNCTIONS

2020 ◽  
pp. 1-36
Author(s):  
OLIVER STEIN

We prove a functional equation for a vector valued real analytic Eisenstein series transforming with the Weil representation of $\operatorname{Sp}(n,\mathbb{Z})$ on $\mathbb{C}[(L^{\prime }/L)^{n}]$ . By relating such an Eisenstein series with a real analytic Jacobi Eisenstein series of degree $n$ , a functional equation for such an Eisenstein series is proved. Employing a doubling method for Jacobi forms of higher degree established by Arakawa, we transfer the aforementioned functional equation to a zeta function defined by the eigenvalues of a Jacobi eigenform. Finally, we obtain the analytic continuation and a functional equation of the standard $L$ -function attached to a Jacobi eigenform, which was already proved by Murase, however in a different way.


2009 ◽  
Vol 05 (05) ◽  
pp. 805-830
Author(s):  
KAREN TAYLOR

In this paper, we introduce a vector-valued nonanalytic Eisenstein series appearing naturally in the Rankin–Selberg convolution of a vector-valued modular cusp form associated to a monomial representation ρ of SL(2,ℤ). This vector-valued Eisenstein series transforms under a representation χρ associated to ρ. We use a method of Selberg to obtain an analytic continuation of this vector-valued nonanalytic Eisenstein series to the whole complex plane.



2014 ◽  
Vol 10 (06) ◽  
pp. 1519-1540 ◽  
Author(s):  
René Olivetto

In this paper, we describe the automorphic properties of the Fourier coefficients of meromorphic Jacobi forms. Extending results of Dabholkar, Murthy, and Zagier, and Bringmann and Folsom, we prove that the canonical Fourier coefficients of a meromorphic Jacobi form φ(z; τ) are the holomorphic parts of some (vector-valued) almost harmonic Maass forms. We also give a precise description of their completions, which turn out to be uniquely determined by the Laurent coefficients of φ at each pole, as well as some well-known real analytic functions, that appear for instance in the completion of Appell–Lerch sums.



2011 ◽  
Vol 86 (3) ◽  
pp. 461-472 ◽  
Author(s):  
HIROFUMI TSUMURA

AbstractIn this paper, we consider certain double series analogous to Tornheim’s double series and real analytic Eisenstein series. By computing double integrals in two ways, we express the double series as a sum of products of polylogarithms. The technique generalises one given by Kanemitsu, Tanigawa and Yoshimoto. Evaluating the double series at particular points gives new evaluations for certain double series in terms of values of the Riemann zeta function and the dilogarithm which are analogues of formulas of Mordell and Goncharov.



2019 ◽  
Vol 15 (02) ◽  
pp. 265-287 ◽  
Author(s):  
Brandon Williams

We study the (mock) Eisenstein series [Formula: see text] of weight [Formula: see text] for the Weil representation on an even lattice, defined as the result of Bruinier and Kuss’s coefficient formula for the Eisenstein series naively evaluated at [Formula: see text]. We describe the transformation law of [Formula: see text] in general. Most of this paper is dedicated to collecting examples where the coefficients of [Formula: see text] contain interesting arithmetic information. Finally, we make a few remarks about the case [Formula: see text].



2004 ◽  
Vol Volume 27 ◽  
Author(s):  
R Balasubramanian ◽  
K Ramachandra

International audience The Hurwitz zeta-function associated with the parameter $a\,(0< a\leq1)$ is a generalisation of the Riemann zeta-function namely the case $a=1$. It is defined by $$\zeta(s,a)=\sum_{n=0}^{\infty}(n+a)^{-s},\,(s=\sigma+it,\,\sigma>1)$$ and its analytic continuation. %In fact $$\zeta(s,a)=\sum_{n=0}^{\infty}\left((n+a)^{-s}-\int_{n}^{n+1}\frac{du}{(u+a)^s} \right)+\frac{a^{1-s}}{s-1}$$ gives the analytic continuation to $(\sigma>0)$. A repetition of this several times shows that $$\zeta-\frac{a^{1-s}}{s-1}$$ can be continued as an entire function to the whole plane. In $Re(s)\geq-1,\,t\geq2,\,\zeta(s,a)-a^{-s}=O(t^3)$ and by the functional equation (see \S2) it is $$O\left(\left(\frac{\vert s\vert}{2\pi}\right)^{\frac{1}{2}-Re(s)}\right)$$ in $Re(s)\leq-1,\,t\geq2$. From these facts In this paper, we deduce an `Approximate function equation' (see \S3), which is a generalisation of the approximate functional equation for $\zeta(s)$. Combining this with an important theorem due to van-der-Corput, we prove $$T^{-\frac{1}{3}}\int_{T}^{T+T^{\frac{1}{3}}} \vert\zeta(\frac{1}{2}+it)-a^{-\frac{1}{2}-it}\vert^2 dt <\!\!\!< (\log T)^3$$ uniformly in $a(0< a\leq1)$. From this we deduce similar results for quasi $L$-functions and more general functions. %Let $a_1, a_2,\ldots$, be any periodic sequence of complex numbers for which the sum over a period is zero. Let $b_1, b_2,\ldots$ be any sequence of complex numbers for which $\sum_{j=2}^{n}\vert b_j-b_{j-1}\vert+\vert b_n\vert\leq n^{\varepsilon}$ for every $\varepsilon>0$ and every $n\geq n_0(\varepsilon)$. Then we prove $$T^{-\frac{1}{3}}\int_{T}^{T+T^{\frac{1}{3}}} \vert\sum_{n=1}^{\infty}\frac{a_nb_n}{(n+a)^{\frac{1}{2}+it}}\vert^2\,dt\leq T^{\varepsilon}$$ for every $\varepsilon>0$ and every $T\geq T_0(\varepsilon)$. Here, as usual, $0<a\leq1$ and $T_0(\varepsilon)$ is independent of $a$.



2019 ◽  
Vol 19 (4) ◽  
pp. 1287-1347 ◽  
Author(s):  
Zheng Liu

We construct the $p$-adic standard $L$-functions for ordinary families of Hecke eigensystems of the symplectic group $\operatorname{Sp}(2n)_{/\mathbb{Q}}$ using the doubling method. We explain a clear and simple strategy of choosing the local sections for the Siegel Eisenstein series on the doubling group $\operatorname{Sp}(4n)_{/\mathbb{Q}}$, which guarantees the nonvanishing of local zeta integrals and allows us to $p$-adically interpolate the restrictions of the Siegel Eisenstein series to $\operatorname{Sp}(2n)_{/\mathbb{Q}}\times \operatorname{Sp}(2n)_{/\mathbb{Q}}$.



Author(s):  
Jimmy Tseng

AbstractWe produce an estimate for the K-Bessel function $$K_{r + i t}(y)$$ K r + i t ( y ) with positive, real argument y and of large complex order $$r+it$$ r + i t where r is bounded and $$t = y \sin \theta $$ t = y sin θ for a fixed parameter $$0\le \theta \le \pi /2$$ 0 ≤ θ ≤ π / 2 or $$t= y \cosh \mu $$ t = y cosh μ for a fixed parameter $$\mu >0$$ μ > 0 . In particular, we compute the dominant term of the asymptotic expansion of $$K_{r + i t}(y)$$ K r + i t ( y ) as $$y \rightarrow \infty $$ y → ∞ . When t and y are close (or equal), we also give a uniform estimate. As an application of these estimates, we give bounds on the weight-zero (real-analytic) Eisenstein series $$E_0^{(j)}(z, r+it)$$ E 0 ( j ) ( z , r + i t ) for each inequivalent cusp $$\kappa _j$$ κ j when $$1/2 \le r \le 3/2$$ 1 / 2 ≤ r ≤ 3 / 2 .



1988 ◽  
Vol 30 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Hugh L. Montgomery

Let be a positive definite binary quadratic form with real coefficients and discriminant b2 − 4ac = −1.Among such forms, let . The Epstein zeta function of f is denned to beRankin [7], Cassels [1], Ennola [5], and Diananda [4] between them proved that for every real s > 0,We prove a corresponding result for theta functions. For real α > 0, letThis function satisfies the functional equation(This may be proved by using the formula (4) below, and then twice applying the identity (8).)



Sign in / Sign up

Export Citation Format

Share Document