LIE ALGEBRA MODULES WHICH ARE LOCALLY FINITE AND WITH FINITE MULTIPLICITIES OVER THE SEMISIMPLE PART

2021 ◽  
pp. 1-41
Author(s):  
VOLODYMYR MAZORCHUK ◽  
RAFAEL MRÐEN

Abstract For a finite-dimensional Lie algebra $\mathfrak {L}$ over $\mathbb {C}$ with a fixed Levi decomposition $\mathfrak {L} = \mathfrak {g} \ltimes \mathfrak {r}$ , where $\mathfrak {g}$ is semisimple, we investigate $\mathfrak {L}$ -modules which decompose, as $\mathfrak {g}$ -modules, into a direct sum of simple finite-dimensional $\mathfrak {g}$ -modules with finite multiplicities. We call such modules $\mathfrak {g}$ -Harish-Chandra modules. We give a complete classification of simple $\mathfrak {g}$ -Harish-Chandra modules for the Takiff Lie algebra associated to $\mathfrak {g} = \mathfrak {sl}_2$ , and for the Schrödinger Lie algebra, and obtain some partial results in other cases. An adapted version of Enright’s and Arkhipov’s completion functors plays a crucial role in our arguments. Moreover, we calculate the first extension groups of infinite-dimensional simple $\mathfrak {g}$ -Harish-Chandra modules and their annihilators in the universal enveloping algebra, for the Takiff $\mathfrak {sl}_2$ and the Schrödinger Lie algebra. In the general case, we give a sufficient condition for the existence of infinite-dimensional simple $\mathfrak {g}$ -Harish-Chandra modules.

2012 ◽  
Vol 2013 (682) ◽  
pp. 1-48
Author(s):  
Lidia Angeleri Hügel ◽  
Javier Sánchez

Abstract. We give a complete classification of the infinite dimensional tilting modules over a tame hereditary algebra R. We start our investigations by considering tilting modules of the form where is a union of tubes, and denotes the universal localization of R at in the sense of Schofield and Crawley-Boevey. Here is a direct sum of the Prüfer modules corresponding to the tubes in . Over the Kronecker algebra, large tilting modules are of this form in all but one case, the exception being the Lukas tilting module L whose tilting class consists of all modules without indecomposable preprojective summands. Over an arbitrary tame hereditary algebra, T can have finite dimensional summands, but the infinite dimensional part of T is still built up from universal localizations, Prüfer modules and (localizations of) the Lukas tilting module. We also recover the classification of the infinite dimensional cotilting R-modules due to Buan and Krause.


2005 ◽  
Vol 2005 (2) ◽  
pp. 225-262 ◽  
Author(s):  
N. Z. Iorgov ◽  
A. U. Klimyk

The aim of this paper is to give a complete classification of irreducible finite-dimensional representations of the nonstandardq-deformationU′q(son)(which does not coincide with the Drinfel'd-Jimbo quantum algebraUq(son)) of the universal enveloping algebraU(son(ℂ))of the Lie algebrason(ℂ)whenqis not a root of unity. These representations are exhausted by irreducible representations of the classical type and of the nonclassical type. The theorem on complete reducibility of finite-dimensional representations ofU′q(son)is proved.


2017 ◽  
Vol 16 (03) ◽  
pp. 1750053 ◽  
Author(s):  
Slaven Kožić

Let [Formula: see text] be an untwisted affine Kac–Moody Lie algebra. The top of every irreducible highest weight integrable [Formula: see text]-module is the finite-dimensional irreducible [Formula: see text]-module, where the action of the simple Lie algebra [Formula: see text] is given by zeroth products arising from the underlying vertex operator algebra theory. Motivated by this fact, we consider zeroth products of level [Formula: see text] Frenkel–Jing operators corresponding to Drinfeld realization of the quantum affine algebra [Formula: see text]. By applying these products, which originate from the quantum vertex algebra theory developed by Li, on the extension of Koyama vertex operator [Formula: see text], we obtain an infinite-dimensional vector space [Formula: see text]. Next, we introduce an associative algebra [Formula: see text], a certain quantum analogue of the universal enveloping algebra [Formula: see text], and construct some infinite-dimensional [Formula: see text]-modules [Formula: see text] corresponding to the finite-dimensional irreducible [Formula: see text]-modules [Formula: see text]. We show that the space [Formula: see text] carries a structure of an [Formula: see text]-module and, furthermore, we prove that the [Formula: see text]-module [Formula: see text] is isomorphic to the [Formula: see text]-module [Formula: see text].


2018 ◽  
Vol 2019 (15) ◽  
pp. 4822-4844 ◽  
Author(s):  
Natalia Iyudu ◽  
Agata Smoktunowicz

Abstract Potential algebras feature in the minimal model program and noncommutative resolution of singularities, and the important cases are when they are finite dimensional, or of linear growth. We develop techniques, involving Gröbner basis theory and generalized Golod–Shafarevich-type theorems for potential algebras, to determine finiteness conditions in terms of the potential. We consider two-generated potential algebras. Using Gröbner bases techniques and arguing in terms of associated truncated algebra we prove that they cannot have dimension smaller than 8. This answers a question of Wemyss [21], related to the geometric argument of Toda [17]. We derive from the improved version of the Golod–Shafarevich theorem, that if the potential has only terms of degree 5 or higher, then the potential algebra is infinite dimensional. We prove that potential algebra for any homogeneous potential of degree $n\geqslant 3$ is infinite dimensional. The proof includes a complete classification of all potentials of degree 3. Then we introduce a certain version of Koszul complex, and prove that in the class $\mathcal {P}_{n}$ of potential algebras with homogeneous potential of degree $n+1\geqslant 4$, the minimal Hilbert series is $H_{n}=\frac {1}{1-2t+2t^{n}-t^{n+1}}$, so they are all infinite dimensional. Moreover, growth could be polynomial (but nonlinear) for the potential of degree 4, and is always exponential for potential of degree starting from 5. For one particular type of potential we prove a conjecture by Wemyss, which relates the difference of dimensions of potential algebra and its abelianization with Gopakumar–Vafa invariants.


Author(s):  
Xiaomin Tang

This paper is devoted to study 2-local derivations on [Formula: see text]-algebra [Formula: see text] which is an infinite-dimensional Lie algebra with some outer derivations. We prove that all 2-local derivations on the [Formula: see text]-algebra [Formula: see text] are derivations. We also give a complete classification of the 2-local derivation on the so-called thin Lie algebra and prove that it admits many 2-local derivations which are not derivations.


1968 ◽  
Vol 20 ◽  
pp. 344-361 ◽  
Author(s):  
I. Z. Bouwer

Let L be any simple finite-dimensional Lie algebra (defined over the field K of complex numbers). Cartan's theory of weights is used to define sets of (algebraic) representations of L that can be characterized in terms of left ideals of the universal enveloping algebra of L. These representations, called standard, generalize irreducible representations that possess a dominant weight. The newly obtained representations are all infinite-dimensional. Their study is initiated here by obtaining a partial solution to the problem of characterizing them by means of sequences of elements in K.


2001 ◽  
Vol 53 (2) ◽  
pp. 225-243 ◽  
Author(s):  
D. J. Britten ◽  
F. W. Lemire

AbstractLet be a finite dimensional simple Lie algebra over the complex numbers C. Fernando reduced the classification of infinite dimensional simple -modules with a finite dimensional weight space to determining the simple torsion free -modules for of type A or C. Thesemodules were determined by Mathieu and using his work we provide a more elementary construction realizing each one as a submodule of an easily constructed tensor product module.


2019 ◽  
Vol 18 (01) ◽  
pp. 1950002 ◽  
Author(s):  
Xiangqian Guo ◽  
Genqiang Liu

In this paper, we studied the jet modules for the centerless Virasoro-like algebra which is the Lie algebra of the Lie group of the area-preserving diffeomorphisms of a [Formula: see text]-torus. The jet modules are certain natural modules over the Lie algebra of semi-direct product of the centerless Virasoro-like algebra and the Laurent polynomial algebra in two variables. We reduce the irreducible jet modules to the finite-dimensional irreducible modules over some infinite-dimensional Lie algebra and then characterize the irreducible jet modules with irreducible finite dimensional modules over [Formula: see text]. To determine the indecomposable jet modules, we use the technique of polynomial modules in the sense of [Irreducible representations for toroidal Lie algebras, J. Algebras 221 (1999) 188–231; Weight modules over exp-polynomial Lie algebras, J. Pure Appl. Algebra 191 (2004) 23–42]. Consequently, indecomposable jet modules are described using modules over the algebra [Formula: see text], which is the “positive part” of a Block type algebra studied first by [Some infinite-dimensional simple Lie algebras in characteristic [Formula: see text] related to those of Block, J. Pure Appl. Algebra 127(2) (1998) 153–165] and recently by [A [Formula: see text]-graded generalization of the Witt-algebra, preprint; Classification of simple Lie algebras on a lattice, Proc. London Math. Soc. 106(3) (2013) 508–564]).


2016 ◽  
Vol 18 (03) ◽  
pp. 1550040 ◽  
Author(s):  
Simon Lentner

For a finite-dimensional semisimple Lie algebra and a root of unity, Lusztig defined an infinite-dimensional quantum group of divided powers. Under certain restrictions on the order of the root of unity, he constructed a Frobenius homomorphism with finite-dimensional Hopf kernel and with the image of the universal enveloping algebra. In this article, we define and completely describe the Frobenius homomorphism for arbitrary roots of unity by systematically using the theory of Nichols algebras. In several new exceptional cases, the Frobenius–Lusztig kernel is associated to a different Lie algebra than the initial Lie algebra. Moreover, the Frobenius homomorphism often switches short and long roots and/or maps to a braided category.


Author(s):  
MÁTYÁS DOMOKOS ◽  
VESSELIN DRENSKY

AbstractThe problem of finding generators of the subalgebra of invariants under the action of a group of automorphisms of a finite-dimensional Lie algebra on its universal enveloping algebra is reduced to finding homogeneous generators of the same group acting on the symmetric tensor algebra of the Lie algebra. This process is applied to prove a constructive Hilbert–Nagata Theorem (including degree bounds) for the algebra of invariants in a Lie nilpotent relatively free associative algebra endowed with an action induced by a representation of a reductive group.


Sign in / Sign up

Export Citation Format

Share Document