Standard Representations of Simple Lie Algebras

1968 ◽  
Vol 20 ◽  
pp. 344-361 ◽  
Author(s):  
I. Z. Bouwer

Let L be any simple finite-dimensional Lie algebra (defined over the field K of complex numbers). Cartan's theory of weights is used to define sets of (algebraic) representations of L that can be characterized in terms of left ideals of the universal enveloping algebra of L. These representations, called standard, generalize irreducible representations that possess a dominant weight. The newly obtained representations are all infinite-dimensional. Their study is initiated here by obtaining a partial solution to the problem of characterizing them by means of sequences of elements in K.

1965 ◽  
Vol 25 ◽  
pp. 211-220 ◽  
Author(s):  
Hiroshi Kimura

Let g be a semi-simple Lie algebra over an algebraically closed field K of characteristic 0. For finite dimensional representations of g, the following important results are known; 1) H1(g, V) = 0 for any finite dimensional g space V. This is equivalent to the complete reducibility of all the finite dimensional representations,2) Determination of all irreducible representations in connection with their highest weights.3) Weyl’s formula for the character of irreducible representations [9].4) Kostant’s formula for the multiplicity of weights of irreducible representations [6],5) The law of the decomposition of the tensor product of two irreducible representations [1].


2017 ◽  
Vol 16 (03) ◽  
pp. 1750053 ◽  
Author(s):  
Slaven Kožić

Let [Formula: see text] be an untwisted affine Kac–Moody Lie algebra. The top of every irreducible highest weight integrable [Formula: see text]-module is the finite-dimensional irreducible [Formula: see text]-module, where the action of the simple Lie algebra [Formula: see text] is given by zeroth products arising from the underlying vertex operator algebra theory. Motivated by this fact, we consider zeroth products of level [Formula: see text] Frenkel–Jing operators corresponding to Drinfeld realization of the quantum affine algebra [Formula: see text]. By applying these products, which originate from the quantum vertex algebra theory developed by Li, on the extension of Koyama vertex operator [Formula: see text], we obtain an infinite-dimensional vector space [Formula: see text]. Next, we introduce an associative algebra [Formula: see text], a certain quantum analogue of the universal enveloping algebra [Formula: see text], and construct some infinite-dimensional [Formula: see text]-modules [Formula: see text] corresponding to the finite-dimensional irreducible [Formula: see text]-modules [Formula: see text]. We show that the space [Formula: see text] carries a structure of an [Formula: see text]-module and, furthermore, we prove that the [Formula: see text]-module [Formula: see text] is isomorphic to the [Formula: see text]-module [Formula: see text].


2009 ◽  
Vol 20 (03) ◽  
pp. 339-368 ◽  
Author(s):  
MINORU ITOH

This paper presents new generators for the center of the universal enveloping algebra of the symplectic Lie algebra. These generators are expressed in terms of the column-permanent and it is easy to calculate their eigenvalues on irreducible representations. We can regard these generators as the counterpart of central elements of the universal enveloping algebra of the orthogonal Lie algebra given in terms of the column-determinant by Wachi. The earliest prototype of all these central elements is the Capelli determinants in the universal enveloping algebra of the general linear Lie algebra.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
A. Morozov ◽  
M. Reva ◽  
N. Tselousov ◽  
Y. Zenkevich

AbstractWe describe a systematic method to construct arbitrary highest-weight modules, including arbitrary finite-dimensional representations, for any finite dimensional simple Lie algebra $${\mathfrak {g}}$$ g . The Lie algebra generators are represented as first order differential operators in $$\frac{1}{2} \left( \dim {\mathfrak {g}} - \text {rank} \, {\mathfrak {g}}\right) $$ 1 2 dim g - rank g variables. All rising generators $$\mathbf{e}$$ e are universal in the sense that they do not depend on representation, the weights enter (in a very simple way) only in the expressions for the lowering operators $$\mathbf{f}$$ f . We present explicit formulas of this kind for the simple root generators of all classical Lie algebras.


1976 ◽  
Vol 28 (1) ◽  
pp. 174-180 ◽  
Author(s):  
Stephen Berman

A well known result in the theory of Lie algebras, due to H. Zassenhaus, states that if is a finite dimensional Lie algebra over the field K such that the killing form of is non-degenerate, then the derivations of are all inner, [3, p. 74]. In particular, this applies to the finite dimensional split simple Lie algebras over fields of characteristic zero. In this paper we extend this result to a class of Lie algebras which generalize the split simple Lie algebras, and which are defined by Cartan matrices (for a definition see § 1). Because of the fact that the algebras we consider are usually infinite dimensional, the method we employ in our investigation is quite different from the standard one used in the finite dimensional case, and makes no reference to any associative bilinear form on the algebras.


1990 ◽  
Vol 05 (24) ◽  
pp. 1967-1977 ◽  
Author(s):  
E. S. FRADKIN ◽  
V. YA. LINETSKY

Infinite-dimensional algebras associated with simple finite-dimensional Lie algebra g are considered. Higher-spin generalizations of sl(2) are studied in detail. Those of the Virasoro algebra are viewed as their "analytic continuations". Applications in higher-spin theory and in conformal QFT are discussed.


2010 ◽  
Vol 82 (3) ◽  
pp. 401-423
Author(s):  
XIN TANG

AbstractLet 𝒰(𝔯(1)) denote the enveloping algebra of the two-dimensional nonabelian Lie algebra 𝔯(1) over a base field 𝕂. We study the maximal abelian ad-nilpotent (mad) associative subalgebras and finite-dimensional Lie subalgebras of 𝒰(𝔯(1)). We first prove that the set of noncentral elements of 𝒰(𝔯(1)) admits the Dixmier partition, 𝒰(𝔯(1))−𝕂=⋃ 5i=1Δi, and establish characterization theorems for elements in Δi, i=1,3,4. Then we determine the elements in Δi, i=1,3 , and describe the eigenvalues for the inner derivation ad Bx,x∈Δi, i=3,4 . We also derive other useful results for elements in Δi, i=2,3,4,5 . As an application, we find all framed mad subalgebras of 𝒰(𝔯(1)) and determine all finite-dimensional nonabelian Lie algebras that can be realized as Lie subalgebras of 𝒰(𝔯(1)) . We also study the realizations of the Lie algebra 𝔯(1) in 𝒰(𝔯(1)) in detail.


2009 ◽  
Vol 146 (2) ◽  
pp. 351-378 ◽  
Author(s):  
K. H. HOFMANN ◽  
K.-H. NEEB

AbstractA pro-Lie group is a projective limit of a family of finite-dimensional Lie groups. In this paper we show that a pro-Lie group G is a Lie group in the sense that its topology is compatible with a smooth manifold structure for which the group operations are smooth if and only if G is locally contractible. We also characterize the corresponding pro-Lie algebras in various ways. Furthermore, we characterize those pro-Lie groups which are locally exponential, that is, they are Lie groups with a smooth exponential function which maps a zero neighbourhood in the Lie algebra diffeomorphically onto an open identity neighbourhood of the group.


2001 ◽  
Vol 53 (2) ◽  
pp. 225-243 ◽  
Author(s):  
D. J. Britten ◽  
F. W. Lemire

AbstractLet be a finite dimensional simple Lie algebra over the complex numbers C. Fernando reduced the classification of infinite dimensional simple -modules with a finite dimensional weight space to determining the simple torsion free -modules for of type A or C. Thesemodules were determined by Mathieu and using his work we provide a more elementary construction realizing each one as a submodule of an easily constructed tensor product module.


2013 ◽  
Vol 53 (5) ◽  
pp. 450-456 ◽  
Author(s):  
Severin Pošta ◽  
Miloslav Havlíček

We discuss the construction of the Verma basis of the enveloping algebra and of finite dimensional representations of the Lie algebra An. We give an alternate proof of so-called Verma inequalities to the one given in [1] by P. Littelmann.


Sign in / Sign up

Export Citation Format

Share Document