scholarly journals Random initial conditions for semi-linear PDEs

2019 ◽  
Vol 150 (3) ◽  
pp. 1533-1565
Author(s):  
Dirk Blömker ◽  
Giuseppe Cannizzaro ◽  
Marco Romito

AbstractWe analyse the effect of random initial conditions on the local well-posedness of semi-linear PDEs, to investigate to what extent recent ideas on singular stochastic PDEs can prove useful in this framework.In particular, in some cases, stochastic initial conditions extend the validity of the fixed-point argument to larger spaces than deterministic initial conditions would allow, but in general, it is never possible to go beyond the threshold that is predicted by critical scaling, as in our general class of equations we are not exploiting any special structure present in the equation.We also give a specific example where the level of regularity for the fixed-point argument reached by random initial conditions is not yet critical, but it is already sharp in the sense that we find infinitely many random initial conditions of slightly lower regularity, where there is no solution at all. Thus criticality cannot be reached even by random initial conditions.The existence and uniqueness in a critical space is always delicate, but we can consider the Burgers equation in logarithmically sub-critical spaces, where existence and uniqueness hold, and again random initial conditions allow to extend the validity to spaces of lower regularity which are still logarithmically sub-critical.

2005 ◽  
Vol 42 (02) ◽  
pp. 550-565 ◽  
Author(s):  
O. E. Barndorff-Nielsen ◽  
N. N. Leonenko

We consider solutions of Burgers' equation with linear or quadratic external potential and stationary random initial conditions of Ornstein-Uhlenbeck type. We study a class of limit laws that correspond to a scale renormalization of the solutions.


2018 ◽  
Vol 37 (4) ◽  
pp. 153-172
Author(s):  
Robab Alikhani ◽  
Fariba Bahrani

In this paper, we prove the existence and uniqueness of global solution for second order interval valued integrodifferential equation with initial conditions admitting only the existence of a lower solution or an upper solution. In this study, in order to make the global solution on entire $[0,b]$, we use a fixed point in partially ordered sets on the subintervals of $[0,b]$ and obtain local solutions. Also, under weak conditions we show being well-defined a special kind of  H-difference involved in this work. Moreover, we compare the results of existence and uniqueness under consideration of two kind of partial ordering on fuzzy numbers.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Lili Chen ◽  
Shuai Huang ◽  
Chaobo Li ◽  
Yanfeng Zhao

In this paper, we prove the existence and uniqueness of fixed points for F -contractions in complete Branciari b -metric spaces. Furthermore, an example for supporting the related result is shown. We also present the concept of the weak well-posedness of the fixed-point problem of the mapping T and discuss the weak well-posedness of the fixed-point problem of an F -contraction in complete Branciari b -metric spaces. Besides, we investigate the problem of common fixed points for F -contractions in above spaces. As an application, we apply our main results to solving the existence and uniqueness of solutions for a class of the integral equation and the dynamic programming problem, respectively.


1996 ◽  
Vol 06 (02) ◽  
pp. 269-277 ◽  
Author(s):  
Z. CHARKI

A fixed point argument is used to prove the existence and uniqueness of solutions for the unsteady deep Bénard convection equations in [Formula: see text] for [Formula: see text].


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Azizollah Babakhani ◽  
Dumitru Baleanu

We discuss the existence and uniqueness of solution to nonlinear fractional order ordinary differential equations(Dα-ρtDβ)x(t)=f(t,x(t),Dγx(t)),t∈(0,1)with boundary conditionsx(0)=x0,  x(1)=x1or satisfying the initial conditionsx(0)=0,  x′(0)=1, whereDαdenotes Caputo fractional derivative,ρis constant,1<α<2,and0<β+γ≤α. Schauder's fixed-point theorem was used to establish the existence of the solution. Banach contraction principle was used to show the uniqueness of the solution under certain conditions onf.


2021 ◽  
Vol 25 (1) ◽  
pp. 1-30
Author(s):  
Choukri Derbazi ◽  
Zidane Baitiche ◽  
Mouffak Benchohra ◽  
Gaston N'guérékata

The main purpose of this paper is to study the existence, uniqueness, Ea-Ulam stability results, and other properties of solutions for certain classes of nonlinear fractional differential equations involving the ps-Caputo derivative with initial conditions. Modern tools of functional analysis are applied to obtain the main results. More precisely using Weissinger's fixed point theorem and Schaefer's fixed point theorem the existence and uniqueness results of solutions are proven in the bounded domain. While the well known Banach fixed point theorem coupled with Bielecki type norm are used with the end goal to establish sufficient conditions for existence and uniqueness results on unbounded domains. Meanwhile, the monotone iterative technique combined with the method of upper and lower solutions is used to prove the existence and uniqueness of extremal solutions. Furthermore, by means of new generalizations of Gronwall's inequality, different kinds of Ea-Ulam stability of the proposed problem are studied. Finally, as applications of the theoretical results, some examples are given to illustrate the feasibility and correctness of the main results.


Sign in / Sign up

Export Citation Format

Share Document