scholarly journals A late Quaternary paleoenvironmental record in sand dunes of the northern Atacama Desert, Chile

2018 ◽  
Vol 90 (1) ◽  
pp. 127-138 ◽  
Author(s):  
Kari M. Finstad ◽  
Marco Pfeiffer ◽  
Gavin McNicol ◽  
Michael Tuite ◽  
Kenneth Williford ◽  
...  

AbstractThis paper reports a previously unidentified paleoenvironmental record found in sand dunes of the Atacama Desert, Chile. Long-term aeolian deflation by prevailing onshore winds has resulted in the deposition of sand on the irregular surface of a Miocene-aged anhydrite outcrop. Two deposits ~25 km apart, along the prevailing wind trajectory, were hand excavated then analyzed for vertical (and temporal) changes in physical and chemical composition. Radiocarbon ages of organic matter embedded within the deposits show that rapid accumulation of sediment began at the last glacial maximum and slowed considerably after the Pacific Ocean attained its present post-glacial level. Over this time period, grain sizes are seen to increase while accumulation rates simultaneously decrease, suggesting greater wind speeds and/or a change or decrease in sediment supply. Changes in δ34S values of sulfate in the sediment beginning ~10 ka indicate an increase in marine sources. Similarly, δ2H values from palmitic acid show a steady increase at ~10 ka, likely resulting from aridification of the region during the Holocene. Due to the extreme aridity in the region, these sand dunes retain a well-preserved chemical record that reflects changes in elevation and coastal proximity after the last glacial maximum.

Antiquity ◽  
1996 ◽  
Vol 70 (269) ◽  
pp. 623-638 ◽  
Author(s):  
Peter J. Mitchell

In the rough and rugged country of the Lesotho highlands, rock-paintings and archaeological deposits in the rock-shelters record hunter-gatherer life-ways; at Sehonghong, a long sequence runs from recent times to and through the Last Glacial Maximum. Survey of the region's Middle and Later Stone Age sites shows a pattern of concentrations that likely applies to other parts of the Lesotho highlands.


2021 ◽  
Vol 288 (1950) ◽  
Author(s):  
Alba Rey-Iglesia ◽  
Adrian M. Lister ◽  
Paula F. Campos ◽  
Selina Brace ◽  
Valeria Mattiangeli ◽  
...  

Late Quaternary climatic fluctuations in the Northern Hemisphere had drastic effects on large mammal species, leading to the extinction of a substantial number of them. The giant deer ( Megaloceros giganteus ) was one of the species that became extinct in the Holocene, around 7660 calendar years before present. In the Late Pleistocene, the species ranged from western Europe to central Asia. However, during the Holocene, its range contracted to eastern Europe and western Siberia, where the last populations of the species occurred. Here, we generated 35 Late Pleistocene and Holocene giant deer mitogenomes to explore the genetics of the demise of this iconic species. Bayesian phylogenetic analyses of the mitogenomes suggested five main clades for the species: three pre-Last Glacial Maximum clades that did not appear in the post-Last Glacial Maximum genetic pool, and two clades that showed continuity into the Holocene. Our study also identified a decrease in genetic diversity starting in Marine Isotope Stage 3 and accelerating during the Last Glacial Maximum. This reduction in genetic diversity during the Last Glacial Maximum, coupled with a major contraction of fossil occurrences, suggests that climate was a major driver in the dynamics of the giant deer.


2011 ◽  
Vol 76 (2) ◽  
pp. 264-271 ◽  
Author(s):  
Susan R. H. Zimmerman ◽  
Crystal Pearl ◽  
Sidney R. Hemming ◽  
Kathryn Tamulonis ◽  
N. Gary Hemming ◽  
...  

AbstractThe type section silts of the late Pleistocene Wilson Creek Formation at Mono Lake contain outsized clasts, dominantly well-rounded pebbles and cobbles of Sierran lithologies. Lithic grains > 425 μm show a similar pattern of variability as the > 10 mm clasts visible in the type section, with decreasing absolute abundance in southern and eastern outcrops. The largest concentrations of ice-rafted debris (IRD) occur at 67–57 ka and 46–32 ka, with strong millennial-scale variability, while little IRD is found during the last glacial maximum and deglaciation.Stratigraphic evidence for high lake level during high IRD intervals, and a lack of geomorphic evidence for coincidence of lake and glaciers, strongly suggests that rafting was by shore ice rather than icebergs. Correspondence of carbonate flux and IRD implies that both were mainly controlled by freshwater input, rather than disparate non-climatic controls. Conversely, the lack of IRD during the last glacial maximum and deglacial highstands may relate to secondary controls such as perennial ice cover or sediment supply. High IRD at Mono Lake corresponds to low glacial flour flux in Owens Lake, both correlative to high warm-season insolation. High-resolution, extra-basinal correlation of the millennial peaks awaits greatly improved age models for both records.


2020 ◽  
Author(s):  
Hyo Jin Koo ◽  
Hyen Goo Cho

Abstract. The sediment supply to the central Yellow Sea since the Last Glacial Maximum was uncovered through clay mineralogy and geochemical analysis of core 11YS-PCL14 in the Central Yellow Sea mud (CYSM). The core can be divided into four units: Unit 4 (700–520 cm; 15.5–14.8 ka), Unit 3 (520–280 cm; 14.8–12.1 ka), Unit 2 (280–130 cm; 12.1–8.8 ka), and Unit 1 (130–0 cm;


2001 ◽  
Vol 80 (3-4) ◽  
pp. 187-208 ◽  
Author(s):  
Fabrizio Galadini ◽  
Paolo Galli ◽  
Augusto Cittadini ◽  
Biagio Giaccio

AbstractPaleoseismological investigations have been performed at Mt. Baldo and in the Lessini Mts. in order to collect quantitative data on the activity of minor faults showing geomorphic evidence of recent activation. The 4.5-km-long, NNE-SSW trending Naole fault was responsible for the formation of a narrow depression at the top of Mt. Baldo, bordered by a continuous bedrock (carbonate) fault scarp to the west. The extensional activity along this minor fault is probably due to gravitational deformations (lateral spreading) in response to the warping of the Mt. Baldo anticline. A 1.5-km-long graben is instead related to the 2.5-km-long, NNW-SSE trending Orsara fault (Lessini Mts.) which was responsible for the formation of bedrock (carbonate) fault scarps. This minor fault is part of a complex structural framework made of few-km-long faults which show evidence of Quaternary activity. Two trenches have been excavated across the Naole fault which showed the occurrence of displacement events subsequent to 17435-16385 BP (cal. age) and probably prior to 5455-5385/5330-5295 BP (cal. age). Two other trenches have been excavated across the Orsara fault whose analysis indicated that the most recent displacement event occurred between 20630-19795 BP and 765-675 BP (cal. age). The upper chronological limits of the displacements give some indications about the minimum elapsed time since the last fault activation (about 5,300 years for the Naole fault and 5-8 centuries for the Orsara fault). Both 1) the maximum expected magnitude of the earthquakes which may originate along the Mt. Baldo thrust and 2) the identification of a main fault responsible for the displacements along the complex net of minor faults affecting the Lessini Mts. are still open questions. As for point 1 although historical earthquakes with magnitude 4.5-5 may be associated with the Mt. Baldo thrust, the investigations carried out in this area did not clarify whether larger magnitude earthquakes may be expected. As for point 2, the cause of the displacements along the Orsara (Lessini Mts.) fault may be related to the activity of a major blind fault (which, however, has never been identified), responsible for the uplift of the Lessini Mts. More generally, the obtained results demonstrate the limits of traditional paleoseismological analyses in Alpine areas whose erosional/depositional activity has been strongly conditioned by the Late Pleistocene glacial history. The lack of units younger than loess and colluvial sediments related to the Last Glacial Maximum makes it impossible to define narrower chronological constraints for the displacements and to estimate the number and size of the displacement events. Moreover, the rebound following the retreat of the thick glacial cover affecting the Alpine area may have induced stresses responsible for higher deformation rates after the Last Glacial Maximum. Higher surficial deformation rates could imply shorter recurrence intervals for faulting episodes and/or larger magnitude earthquakes. Therefore, paleoseismologically inferred data in Alpine areas may not correctly define the fault behaviour related to the present tectonic regime.


Sign in / Sign up

Export Citation Format

Share Document