terrigenous sediment
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 15)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
Rong Wang ◽  
Gerhard Kuhn ◽  
Xun Gong ◽  
Boris K. Biskaborn ◽  
Rainer Gersonde ◽  
...  

A marine sediment record from the central Bering Sea, spanning the last 20 thousand years (ka), was studied to unravel the depositional history with regard to terrigenous sediment supply and biogenic sedimentation. Methodic approaches comprised the inference of accumulation rates of siliciclastic and biogenic components, grain-size analysis, and (clay) mineralogy, as well as paleoclimatic modelling. Changes in the depositional history provides insight into land-ocean linkages of paleoenvironmental changes. During the finale of the Last Glacial Maximum, the depositional environment was characterized by hemipelagic background sedimentation. A marked change in the terrigenous sediment provenance during the late Heinrich 1 Stadial (15.7–14.5 ka), indicated by increases in kaolinite and a high glaciofluvial influx of clay, gives evidence of the deglaciation of the Brooks Range in the hinterland of Alaska. This meltwater pulse also stimulated the postglacial onset of biological productivity. Glacial melt implies regional climate warming during a time of widespread cooling on the northern hemisphere. Our simulation experiment with a coupled climate model suggests atmospheric teleconnections to the North Atlantic, with impacts on the dynamics of the Aleutian Low system that gave rise to warmer winters and an early onset of spring during that time. The late deglacial period between 14.5 and 11.0 ka was characterized by enhanced fluvial runoff and biological productivity in the course of climate amelioration, sea-level rise, seasonal sea-ice retreat, and permafrost thaw in the hinterland. The latter processes temporarily stalled during the Younger Dryas stadial (12.9-11.7 ka) and commenced again during the Preboreal (earliest Holocene), after 11.7 ka. High river runoff might have fertilized the Bering Sea and contributed to enhanced upper ocean stratification. Since 11.0 ka, advanced transgression has shifted the coast line and fluvial influence of the Yukon River away from the study site. The opening of the Bering Strait strengthened contour currents along the continental slope, leaving behind winnowed sand-rich sediments through the early to mid-Holocene, with non-deposition occurring since about 6.0 ka.


2021 ◽  
Author(s):  
W. Walker ◽  
et al.

<div>Figure S1: Location of six photopanels compiled along the outcrop overlaying the 3D textured model. Figure S2: West-facing outcrop between Shumard Canyon and Bone Canyon. Characteristics of slope detachment surfaces aid in correlating surfaces from Shumard to Bone Canyons. Note the discontinuous nature of the terrigenous sediment within Clinothem 4 from Shumard to Bone Canyons (also shown in Fig. 3B). Figure S3: Location of detailed outcrop photos shown in this publication.<br></div><div><br></div><div><br></div>


2021 ◽  
Author(s):  
W. Walker ◽  
et al.

<div>Figure S1: Location of six photopanels compiled along the outcrop overlaying the 3D textured model. Figure S2: West-facing outcrop between Shumard Canyon and Bone Canyon. Characteristics of slope detachment surfaces aid in correlating surfaces from Shumard to Bone Canyons. Note the discontinuous nature of the terrigenous sediment within Clinothem 4 from Shumard to Bone Canyons (also shown in Fig. 3B). Figure S3: Location of detailed outcrop photos shown in this publication.<br></div><div><br></div><div><br></div>


2021 ◽  
Author(s):  
Ellie Pryor ◽  
Ian Hall ◽  
Morten Andersen ◽  
Daniel Babin ◽  
Yue (Merry) Cai ◽  
...  

&lt;div&gt; &lt;p&gt;Sediment provenance is of key importance for understanding transport history and characterising sediment source regions in the marine and terrestrial environment. Radiogenic isotopes are widely used to identify inland and coastal sediment origins. They document changes in detrital terrigenous sediment fluxes which can be related to continental hydrological variability. Understanding sediment sources to the ocean is a pre-requisite before interpreting past climate archives in marine sediment cores.&lt;/p&gt; &lt;/div&gt;&lt;div&gt; &lt;p&gt;&lt;span&gt;South African coastal drainage basins are composed of various geological units, each reflected by different radiogenic isotope signals in the sediment. In addition to the age and nature of their source rocks, the sediment type influences this radiogenic signature.&lt;/span&gt;&lt;/p&gt; &lt;/div&gt;&lt;div&gt; &lt;p&gt;&lt;span&gt;Here, we present a review of the present-day radiogenic isotopic fingerprints of South African river catchments signals from new river sediment samples with the aim to gain a broad spatial coverage of the source rocks in the region and their relative contributions of terrigenous sediment delivered to the ocean. This information will be applied to marine sediment core MD20-3591 (36&amp;#176; 43.707 S; 22&amp;#176; 9.151 E, water depth 2464m), located offshore South Africa which has the potential to record both Agulhas Current and terrestrial variability. The core site receives a significant amount of terrigenous material from the African continents via riverine input. During the last glacial period, these rivers flowed across the continental shelf within a subdued incised valley. The Gourritz River catchment drains the Cape Supergroup and Karoo Supergroup, typical of these southern drainage basins, whereas the eastern Cape rivers drain the Karoo Supergroup geological unit which is capped by the Drakensberg basalts.&lt;/span&gt;&lt;/p&gt; &lt;/div&gt;&lt;div&gt; &lt;p&gt;&lt;span&gt;We are using the knowledge gained from these new South African terrestrial river sediment samples to identify the sources and transport pathways of the terrigenous sediments in MD20-3591. Of particular interest is the sensitivity of the radiogenic isotopic signatures to grain size variabilities and how this relationship can help to define local or distal sediments. These records will allow us to explore variability in regional hydroclimate in relation to the abundant archaeological evidence of cultural and technological innovations of Middle Stone Age humans in southern Africa.&lt;/span&gt;&lt;/p&gt; &lt;/div&gt;


2021 ◽  
Author(s):  
Naroa Martínez-Braceras ◽  
Aitor Payros ◽  
Javier Arostegi ◽  
Jaume Dinarès-Turell

&lt;p&gt;Expanded deep-marine sedimentary successions were deposited on the North Iberian continental margin in Eocene times. These deposits are well exposed along accessible coastal cliffs of the Biscay province, being of great interest for paleoenvironmental and paleoclimatic studies. This study dealt with the 110 m-thick lower Ypresian (early Eocene) succession from Solondota, which is mainly composed of hemipelagic limestones and marls interspersed with abundant turbidites.&lt;/p&gt;&lt;p&gt;Biomagnetostratigraphic and geochemical records allowed correlation of a prominent negative carbon isotope excursion (CIE) with the Ypresian hyperthermal event J, also known as C24n.2rH1. In order to disentangle the environmental evolution of the Solondota turbiditic area during the CIE, high-resolution sedimentological, geochemical (stable isotopes, major, minor and trace elements) and mineralogical (general and clay mineralogy) studies were carried out. The large size of the dataset hindered straightforward identification of relevant variables and interpretation of their relationships. However, a multivariate analysis provided invaluable information about significant trends and variations in the dataset, avoiding empirical or arbitrary selection of representative elements. A good correspondence was found between some elemental trends obtained from the analysis and the sedimentological and mineralogical records. Major and minor elements from the hemipelagic fraction across the Solondota CIE suggest a temporarily more humid continental climate, which caused increased terrigenous material input into the marine environment. While fine-grained terrigenous sediment boosted hemipelagic carbonate dilution, the coarser terrigenous sediment was transported by temporarily more frequent and voluminous turbidity currents. Thus, the results from the Solondota CIE show similarities with deep marine records from other early Eocene minor hyperthermal events. Taking everything into account, this study demonstrates the validity of deep-marine turbiditic successions for providing reliable sedimentological, mineralogical and geochemical records of paleoclimatic significance. Indeed, the expanded nature of turbiditic continental margin successions provides paleoenvironmental records at very high resolution, enriching, and perhaps improving, the commonly condensed and sometimes discontinuous record of hemipelagic-only successions.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Research funded by the Spanish Government project MCI PID2019-105670GB-I00 and the Basque Government project IT-930-16. NM-B received a pre-doctoral grant from the Basque Government and a post-doctoral Dokberri grant from the University of the Basque Country.&lt;/p&gt;


Author(s):  
Nguyen Huy Hoang ◽  
Bui Van Vuong ◽  
Evgenii Egidarev ◽  
Vasiliy Zharikov ◽  
Le Anh Xuan ◽  
...  

The Cat Ba is one of the largest Islands offshore North Vietnam, which is characterized by an abundance of coral reefs in the East and Southeast of the island. The surface sediments are considered the basic elements for the coral ecosystem development. In this study, the authors present some new results studying pH, Eh, mineral composition, and grain size as the basic information for environmental assessment of this area. The results show that the pH value of the surface sediment varies from 6.90 to 8.09, with an average of 7.24 while the Eh value of the sediment ranges from -121.10 to -48.20mV,  an average of -68.39mV, demonstrating a reducing environment. The surface sediments have been classified into 8 size classes: the coarse silt > very coarse silt > medium sand, very fine sand > very coarse sand, fine sand > coarse sand, very fine gravel. Most of the sediments are poorly sorted - very poorly sorted, only a few sedimentary samples are well sorted, moderately sorted, and moderately well sorted. The average mineral composition of the surface sediments consists of: 25% quartz, 17% illite, 16% aragonite, 13% kaolinite, 10% calcite, 5% chlorite, 4% gothite, 3% halite, 2% feldspar and less montmorillonite, and dolomite. These results allowed the researcher to interpret that the sediments have been deposited in a relatively calm environment and the terrigenous sediment sources are dominant over the marine sources. Source marine sediment groups are characterized by coarse grains, high pH, and are rich in carbonate minerals, which have been produced by biological materials. In contrast, the terrigenous sediment group is dominated by fine-grained sediments, rich clay minerals, quartz, and gothite. These fine-grained sediments are commonly distributed in the area and are favorable places for pollutant accumulation.  


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Bin Wang ◽  
Huaiyan Lei ◽  
Fanfan Huang ◽  
Yuan Kong ◽  
Fulong Pan ◽  
...  

We integrated multiple geochemical analysis of a 13.75 m-long core 973-4 recovered from the northeastern South China Sea (SCS) to detect the response of deep-sea sediment archives to sea-level change spanning the last 42 kyr. The age-depth model based on AMS 14C dating, together with the sediment grain size, shows an occurrence of turbidity current at around 14 kyr, which was associated with submarine landslides caused by gas hydrate dissociation. A dominantly terrigenous sediment input was supplied from southwestern Taiwan rivers. By synthesizing environment-sensitive indexes, four distinct stages of paleoenvironmental evolutions were recognized throughout the studied interval. Well-oxygenated condition occurred during the stage I (42.4-31.8 kyr) with low sea-level stand below -80 m, accompanied by flat terrigenous input. The largest amounts of terrigenous sediment input occurred during the late phase of stage II (31.8-20.4 kyr) with the lowest sea-level stand below -120 m because of a short distance from paleo-Taiwan river estuaries to the core location. An occurrence of Ca-enriched turbidity current disturbed the original sediments during the stage III (20.4-13.9 kyr). The stepwise elevated sea-level stand resulted in an enclosed (semi-enclosed) system and contributed to a relatively low-oxygen environment in deep ocean during the stage IV (13.9 kyr—present). Temporal variations of TOC and CaCO3 display contrary pattern synchronously, indicating a decoupled relationship between organic carbon burial and carbonate productivity. Our results highlight that these sedimentary records as reflected in the paleoenvironmental changes in the northeastern SCS were mainly driven by sea-level fluctuations and later, since the mid-Holocene, the strengthening East Asian summer monsoon (EASM) overwhelmed the stable sea level in dominating the environmental changes.


Sign in / Sign up

Export Citation Format

Share Document