scholarly journals Maxima of stochastic processes driven by fractional Brownian motion

2005 ◽  
Vol 37 (03) ◽  
pp. 743-764 ◽  
Author(s):  
Boris Buchmann ◽  
Claudia Klüppelberg

We study stationary processes given as solutions to stochastic differential equations driven by fractional Brownian motion. This rich class includes the fractional Ornstein-Uhlenbeck process and those processes that can be obtained from it by state space transformations. An explicit formula in terms of Euler's Γ-function describes the asymptotic behaviour of the covariance function of the fractional Ornstein-Uhlenbeck process near zero, which, by an application of Berman's condition, guarantees that this process is in the maximum domain of attraction of the Gumbel distribution. Necessary and sufficient conditions on the state space transforms are stated to classify the maximum domain of attraction of solutions to stochastic differential equations driven by fractional Brownian motion.

2005 ◽  
Vol 37 (3) ◽  
pp. 743-764 ◽  
Author(s):  
Boris Buchmann ◽  
Claudia Klüppelberg

We study stationary processes given as solutions to stochastic differential equations driven by fractional Brownian motion. This rich class includes the fractional Ornstein-Uhlenbeck process and those processes that can be obtained from it by state space transformations. An explicit formula in terms of Euler's Γ-function describes the asymptotic behaviour of the covariance function of the fractional Ornstein-Uhlenbeck process near zero, which, by an application of Berman's condition, guarantees that this process is in the maximum domain of attraction of the Gumbel distribution. Necessary and sufficient conditions on the state space transforms are stated to classify the maximum domain of attraction of solutions to stochastic differential equations driven by fractional Brownian motion.


Filomat ◽  
2018 ◽  
Vol 32 (18) ◽  
pp. 6493-6503
Author(s):  
Hui Yu

Due to the fact that a fractional Brownian motion (fBm) with the Hurst parameter H ? (0,1/2) U(1/2, 1) is neither a semimartingale nor a Markov process, relatively little is studied about the T-stability for impulsive stochastic differential equations (ISDEs) with fBm. Here, for such linear equations with H ? (1/3, 1/2), by means of the average stability function, sufficient conditions of the T-stability are presented to their numerical solutionswhich are established fromthe Euler-Maruyama method with variable step-size. Moreover, some numerical examples are presented to support the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Caibin Zeng ◽  
Qigui Yang ◽  
YangQuan Chen

Little seems to be known about evaluating the stochastic stability of stochastic differential equations (SDEs) driven by fractional Brownian motion (fBm) via stochastic Lyapunov technique. The objective of this paper is to work with stochastic stability criterions for such systems. By defining a new derivative operator and constructing some suitable stochastic Lyapunov function, we establish some sufficient conditions for two types of stability, that is, stability in probability and moment exponential stability of a class of nonlinear SDEs driven by fBm. We will also give an example to illustrate our theory. Specifically, the obtained results open a possible way to stochastic stabilization and destabilization problem associated with nonlinear SDEs driven by fBm.


2020 ◽  
Vol 12 (2) ◽  
pp. 52
Author(s):  
Tawfiqullah Ayoubi ◽  
Abdul Munir Khirzada

In this research, we first prove that the stochastic logistic model (10) has a positive global solution. Subsequently, we introduce the sufficient conditions for the stochastically stability of the general form of stochastic differential equations (SDEs) in terms of equation (1), for zero solution by using the Lyapunov function. This result is verified via several examples in Appendix A. Besides; we prove that the stochastic logistic model, by incorporating the Ornstein-Uhlenbeck process is stable in zero solution. Furthermore, the simulated results are displayed via the 4-stage stochastic Runge-Kutta (SRK4) numerical method.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
A. Bakka ◽  
S. Hajji ◽  
D. Kiouach

Abstract By means of the Banach fixed point principle, we establish some sufficient conditions ensuring the existence of the global attracting sets of neutral stochastic functional integrodifferential equations with finite delay driven by a fractional Brownian motion (fBm) with Hurst parameter H ∈ ( 1 2 , 1 ) {H\in(\frac{1}{2},1)} in a Hilbert space.


Author(s):  
Xia Zhou ◽  
Dongpeng Zhou ◽  
Shouming Zhong

Abstract This paper consider the existence, uniqueness and exponential stability in the pth moment of mild solution for impulsive neutral stochastic integro-differential equations driven simultaneously by fractional Brownian motion and by standard Brownian motion. Based on semigroup theory, the sufficient conditions to ensure the existence and uniqueness of mild solutions are obtained in terms of fractional power of operators and Banach fixed point theorem. Moreover, the pth moment exponential stability conditions of the equation are obtained by means of an impulsive integral inequality. Finally, an example is presented to illustrate the effectiveness of the obtained results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hossein Jafari ◽  
Marek T. Malinowski ◽  
M. J. Ebadi

AbstractIn this paper, we consider fuzzy stochastic differential equations (FSDEs) driven by fractional Brownian motion (fBm). These equations can be applied in hybrid real-world systems, including randomness, fuzziness and long-range dependence. Under some assumptions on the coefficients, we follow an approximation method to the fractional stochastic integral to study the existence and uniqueness of the solutions. As an example, in financial models, we obtain the solution for an equation with linear coefficients.


Sign in / Sign up

Export Citation Format

Share Document