Critical intensities of Boolean models with different underlying convex shapes

2002 ◽  
Vol 34 (01) ◽  
pp. 48-57
Author(s):  
Rahul Roy ◽  
Hideki Tanemura

We consider the Poisson Boolean model of percolation where the percolating shapes are convex regions. By an enhancement argument we strengthen a result of Jonasson (2000) to show that the critical intensity of percolation in two dimensions is minimized among the class of convex shapes of unit area when the percolating shapes are triangles, and, for any other shape, the critical intensity is strictly larger than this minimum value. We also obtain a partial generalization to higher dimensions. In particular, for three dimensions, the critical intensity of percolation is minimized among the class of regular polytopes of unit volume when the percolating shapes are tetrahedrons. Moreover, for any other regular polytope, the critical intensity is strictly larger than this minimum value.

2002 ◽  
Vol 34 (1) ◽  
pp. 48-57 ◽  
Author(s):  
Rahul Roy ◽  
Hideki Tanemura

We consider the Poisson Boolean model of percolation where the percolating shapes are convex regions. By an enhancement argument we strengthen a result of Jonasson (2000) to show that the critical intensity of percolation in two dimensions is minimized among the class of convex shapes of unit area when the percolating shapes are triangles, and, for any other shape, the critical intensity is strictly larger than this minimum value. We also obtain a partial generalization to higher dimensions. In particular, for three dimensions, the critical intensity of percolation is minimized among the class of regular polytopes of unit volume when the percolating shapes are tetrahedrons. Moreover, for any other regular polytope, the critical intensity is strictly larger than this minimum value.


2011 ◽  
Vol 43 (03) ◽  
pp. 616-635
Author(s):  
Amites Dasgupta ◽  
Rahul Roy ◽  
Anish Sarkar

Consider the region L = {(x, y): 0 ≤ y ≤ Clog(1 + x), x > 0} for a constant C > 0. We study the percolation and coverage properties of this region. For the coverage properties, we place a Poisson point process of intensity λ on the entire half space R + x R and associated with each Poisson point we place a box of a random side length ρ. Depending on the tail behaviour of the random variable ρ we exhibit a phase transition in the intensity for the eventual coverage of the region L. For the percolation properties, we place a Poisson point process of intensity λ on the region R 2. At each point of the process we centre a box of a random side length ρ. In the case ρ ≤ R for some fixed R > 0 we study the critical intensity λc of the percolation on L.


1997 ◽  
Vol 29 (4) ◽  
pp. 878-889 ◽  
Author(s):  
Anish Sarkar

Consider a continuum percolation model in which, at each point of ad-dimensional Poisson process of rate λ, a ball of radius 1 is centred. We show that, for anyd≧ 3, there exists a phase where both the regions, occupied and vacant, contain unbounded components. The proof uses the concept of enhancement for the Boolean model, and along the way we prove that the critical intensity of a Boolean model defined on a slab is strictly larger than the critical intensity of a Boolean model defined on the whole space.


1977 ◽  
Vol 9 (2) ◽  
pp. 268-282 ◽  
Author(s):  
Stanley Sawyer

Let I(x, u) be the probability that two genes found a vector distance x apart are the same type in an infinite-allele selectively-neutral migration model with mutation rate u. The creatures involved inhabit an infinite of colonies, are diploid and are held at N per colony. Set in one dimension and in higher dimensions, where σ2 is the covariance matrix of the migration law (which is assumed to have finite fifth moments). Then in one dimension, in two dimensions, and in three dimensions uniformly for Here C0 is a constant depending on the migration law, K0(y) is the Bessel function of the second kind of order zero, and are the eigenvalues of σ2. For symmetric nearest-neighbor migrations, in one dimension and log mi in two. For is known in one dimension and C0 does not appear. In two dimensions, These results extend and make more precise earlier work of Malécot, Weiss and Kimura and Nagylaki.


1977 ◽  
Vol 9 (02) ◽  
pp. 268-282 ◽  
Author(s):  
Stanley Sawyer

Let I(x, u) be the probability that two genes found a vector distance x apart are the same type in an infinite-allele selectively-neutral migration model with mutation rate u. The creatures involved inhabit an infinite of colonies, are diploid and are held at N per colony. Set in one dimension and in higher dimensions, where σ2 is the covariance matrix of the migration law (which is assumed to have finite fifth moments). Then in one dimension, in two dimensions, and in three dimensions uniformly for Here C 0 is a constant depending on the migration law, K0 (y) is the Bessel function of the second kind of order zero, and are the eigenvalues of σ2. For symmetric nearest-neighbor migrations, in one dimension and log m i in two. For is known in one dimension and C 0 does not appear. In two dimensions, These results extend and make more precise earlier work of Malécot, Weiss and Kimura and Nagylaki.


Author(s):  
Yu Nakayama

The supersymmetric Lee–Yang model is arguably the simplest interacting supersymmetric field theory in two dimensions, albeit nonunitary. A natural question is if there is an analogue of supersymmetric Lee–Yang fixed point in higher dimensions. The absence of any [Formula: see text] symmetry (except for fermion numbers) makes it impossible to approach it by using perturbative [Formula: see text] expansions. We find that the truncated conformal bootstrap suggests that candidate fixed points obtained by the dimensional continuation from two dimensions annihilate below three dimensions, implying that there is no supersymmetric Lee–Yang fixed point in three dimensions. We conjecture that the corresponding phase transition, if any, will be the first-order transition.


1997 ◽  
Vol 29 (04) ◽  
pp. 878-889 ◽  
Author(s):  
Anish Sarkar

Consider a continuum percolation model in which, at each point of a d-dimensional Poisson process of rate λ, a ball of radius 1 is centred. We show that, for any d ≧ 3, there exists a phase where both the regions, occupied and vacant, contain unbounded components. The proof uses the concept of enhancement for the Boolean model, and along the way we prove that the critical intensity of a Boolean model defined on a slab is strictly larger than the critical intensity of a Boolean model defined on the whole space.


2011 ◽  
Vol 43 (3) ◽  
pp. 616-635
Author(s):  
Amites Dasgupta ◽  
Rahul Roy ◽  
Anish Sarkar

Consider the region L = {(x, y): 0 ≤ y ≤ Clog(1 + x), x > 0} for a constant C > 0. We study the percolation and coverage properties of this region. For the coverage properties, we place a Poisson point process of intensity λ on the entire half space R+ x R and associated with each Poisson point we place a box of a random side length ρ. Depending on the tail behaviour of the random variable ρ we exhibit a phase transition in the intensity for the eventual coverage of the region L. For the percolation properties, we place a Poisson point process of intensity λ on the region R2. At each point of the process we centre a box of a random side length ρ. In the case ρ ≤ R for some fixed R > 0 we study the critical intensity λc of the percolation on L.


2013 ◽  
Vol 10 (06) ◽  
pp. 1350024 ◽  
Author(s):  
NORIAKI IKEDA ◽  
KOZO KOIZUMI

Generalized current algebras introduced by Alekseev and Strobl in two dimensions are reconstructed by a graded manifold and a graded Poisson brackets. We generalize their current algebras to higher dimensions. QP-manifolds provide the unified structures of current algebras in any dimension. Current algebras give rise to structures of Leibniz/Loday algebroids, which are characterized by QP-structures. Especially, in three dimensions, a current algebra has a structure of a Lie algebroid up to homotopy introduced by Uchino and one of the authors, which has a bracket of a generalization of the Courant–Dorfman bracket. Anomaly cancellation conditions are reinterpreted as generalizations of the Dirac structure.


Data ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
Domingo Villavicencio-Aguilar ◽  
Edgardo René Chacón-Andrade ◽  
Maria Fernanda Durón-Ramos

Happiness-oriented people are vital in every society; this is a construct formed by three different types of happiness: pleasure, meaning, and engagement, and it is considered as an indicator of mental health. This study aims to provide data on the levels of orientation to happiness in higher-education teachers and students. The present paper contains data about the perception of this positive aspect in two Latin American countries, Mexico and El Salvador. Structure instruments to measure the orientation to happiness were administrated to 397 teachers and 260 students. This data descriptor presents descriptive statistics (mean, standard deviation), internal consistency (Cronbach’s alpha), and differences (Student’s t-test) presented by country, population (teacher/student), and gender of their orientation to happiness and its three dimensions: meaning, pleasure, and engagement. Stepwise-multiple-regression-analysis results are also presented. Results indicated that participants from both countries reported medium–high levels of meaning and engagement happiness; teachers reported higher levels than those of students in these two dimensions. Happiness resulting from pleasure activities was the least reported in general. Males and females presented very similar levels of orientation to happiness. Only the population (teacher/student) showed a predictive relationship with orientation to happiness; however, the model explained a small portion of variance in this variable, which indicated that other factors are more critical when promoting orientation to happiness in higher-education institutions.


Sign in / Sign up

Export Citation Format

Share Document