current algebras
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 10)

H-INDEX

27
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Machiko Hatsuda ◽  
Warren Siegel

Abstract The exceptional symmetry is realized perturbatively in F-theory which is the manifest U-duality theory. The SO(5) U-duality symmetry acts on both the 16 space-time coordinates and the 10 worldvolume coordinates. Closure of the Virasoro algebra requires the Gauss law constraints on the worldvolume. This set of current algebras describes a F-theory 10-brane. The SO(5) duality symmetry is enlarged to the SO(6) symmetry in the Lagrangian formulation. We propose actions of the F-theory 10-brane with SO(5) and SO(6) symmetries. The gauge fields of the latter action are coset elements of SO(6)/SO(6; ℂ) which include both the SO(5)/SO(5; ℂ) spacetime backgrounds and the worldvolume backgrounds. The SO(5) current algebra obtained from the Pasti-Sorokin-Tonin M5-brane Lagrangian leads to the theory behind M-theory, namely F-theory. We also propose an action of the perturbative M-theory 5-brane obtained by sectioning the worldvolume of the F-theory 10-brane.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Alex S. Arvanitakis

Abstract We construct a Poisson algebra of brane currents from a QP-manifold, and show their Poisson brackets take a universal geometric form. This generalises a result of Alekseev and Strobl on string currents and generalised geometry to include branes with worldvolume gauge fields, such as the D3 and M5. Our result yields a universal expression for the ’t Hooft anomaly that afflicts isometries in the presence of fluxes. We determine the current algebra in terms of (exceptional) generalised geometry, and show that the tensor hierarchy gives rise to a brane current hierarchy. Exceptional complex structures produce pairs of anomaly-free current subalgebras on the M5-brane worldvolume.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Machiko Hatsuda ◽  
Shin Sasaki ◽  
Masaya Yata

Abstract We study the current algebras of the NS5-branes, the Kaluza-Klein (KK) five-branes and the exotic $$ {5}_2^2 $$ 5 2 2 -branes in type IIA/IIB superstring theories. Their worldvolume theories are governed by the six-dimensional $$ \mathcal{N} $$ N = (2, 0) tensor and the $$ \mathcal{N} $$ N = (1, 1) vector multiplets. We show that the current algebras are determined through the S- and T-dualities. The algebras of the $$ \mathcal{N} $$ N = (2, 0) theories are characterized by the Dirac bracket caused by the self-dual gauge field in the five-brane worldvolumes, while those of the $$ \mathcal{N} $$ N = (1, 1) theories are given by the Poisson bracket. By the use of these algebras, we examine extended spaces in terms of tensor coordinates which are the representation of ten-dimensional supersymmetry. We also examine the transition rules of the currents in the type IIA/IIB supersymmetry algebras in ten dimensions. Based on the algebras, we write down the section conditions in the extended spaces and gauge transformations of the supergravity fields.


2021 ◽  
Vol 570 ◽  
pp. 470-530
Author(s):  
Ryosuke Kodera ◽  
Kentaro Wada

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Andrei Mikhailov

Abstract Differrential Graded Lie Algebra Dg was previously introduced in the context of current algebras. We show that under some conditions, the problem of constructing equivariantly closed form from closed invariant form is reduces to construction of a representation of Dg. This includes equivariant BV formalism. In particular, an analogue of intertwiner between Weil and Cartan models allows to clarify the general relation between integrated and unintegrated operators in string worldsheet theory.


2019 ◽  
Vol 526 ◽  
pp. 356-381
Author(s):  
Jean Auger ◽  
Michael Lau
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document