On the collapsibility of lifetime regression models

2003 ◽  
Vol 35 (03) ◽  
pp. 755-772
Author(s):  
Thierry Duchesne ◽  
Jeffrey S. Rosenthal

In this paper we derive conditions on the internal wear process under which the resulting time to failure model will be of the simple collapsible form when the usage accumulation history is available. We suppose that failure occurs when internal wear crosses a certain threshold or a traumatic event causes the item to fail. We model the infinitesimal increment in internal wear as a function of time, accumulated internal wear, and usage history, and we derive conditions on this function to get a collapsible model for the distribution of time to failure given the usage history. We reach the conclusion that collapsible models form the subset of accelerated failure time models with time-varying covariates for which the time transformation function satisfies certain simple properties.

2003 ◽  
Vol 35 (3) ◽  
pp. 755-772 ◽  
Author(s):  
Thierry Duchesne ◽  
Jeffrey S. Rosenthal

In this paper we derive conditions on the internal wear process under which the resulting time to failure model will be of the simple collapsible form when the usage accumulation history is available. We suppose that failure occurs when internal wear crosses a certain threshold or a traumatic event causes the item to fail. We model the infinitesimal increment in internal wear as a function of time, accumulated internal wear, and usage history, and we derive conditions on this function to get a collapsible model for the distribution of time to failure given the usage history. We reach the conclusion that collapsible models form the subset of accelerated failure time models with time-varying covariates for which the time transformation function satisfies certain simple properties.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 836
Author(s):  
Irene Mariñas-Collado ◽  
M. Jesús Rivas-López ◽  
Juan M. Rodríguez-Díaz ◽  
M. Teresa Santos-Martín

An accelerated life test of a product or material consists of the observation of its failure time when it is subjected to conditions that stress the usual ones. The purpose is to obtain the parameters of the distribution of the time-to-failure for usual conditions through the observed failure times. A widely used method to provoke an early failure in a mechanism is to modify the temperature at which it is used. In this paper, the statistically optimal plan for Accelerated Failure Time (AFT) models, when the accelerated failure process is described making use of Arrhenius or Eyring equations, was calculated. The result was a design that had only two stress levels, as is common in other AFT models and that is not always practical. A new compromise plan was presented as an alternative to the widely used “4:2:1 plan”. The three-point mixture design proposed specified a support point in the interval that was optimal for the estimation of the parameters in AFT models, rather than simply the middle point. It was studied in comparison to different commonly used designs, and it proved to have a higher D-efficiency than the others.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Moumita Chatterjee ◽  
Sugata Sen Roy

AbstractIn this article, we model alternately occurring recurrent events and study the effects of covariates on each of the survival times. This is done through the accelerated failure time models, where we use lagged event times to capture the dependence over both the cycles and the two events. However, since the errors of the two regression models are likely to be correlated, we assume a bivariate error distribution. Since most event time distributions do not readily extend to bivariate forms, we take recourse to copula functions to build up the bivariate distributions from the marginals. The model parameters are then estimated using the maximum likelihood method and the properties of the estimators studied. A data on respiratory disease is used to illustrate the technique. A simulation study is also conducted to check for consistency.


Sign in / Sign up

Export Citation Format

Share Document