Anisotropic Growth of Voronoi Cells

1994 ◽  
Vol 26 (01) ◽  
pp. 43-53 ◽  
Author(s):  
Thomas H. Scheike

This paper discusses a simple extension of the classical Voronoi tessellation. Instead of using the Euclidean distance to decide the domains corresponding to the cell centers, another translation-invariant distance is used. The resulting tessellation is a scaled version of the usual Voronoi tessellation. Formulas for the mean characteristics (e.g. mean perimeter, surface and volume) of the cells are provided in the case of cell centers from a homogeneous Poisson process. The resulting tessellation is stationary and ergodic but not isotropic.

1994 ◽  
Vol 26 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Thomas H. Scheike

This paper discusses a simple extension of the classical Voronoi tessellation. Instead of using the Euclidean distance to decide the domains corresponding to the cell centers, another translation-invariant distance is used. The resulting tessellation is a scaled version of the usual Voronoi tessellation. Formulas for the mean characteristics (e.g. mean perimeter, surface and volume) of the cells are provided in the case of cell centers from a homogeneous Poisson process. The resulting tessellation is stationary and ergodic but not isotropic.


2000 ◽  
Vol 32 (01) ◽  
pp. 1-18 ◽  
Author(s):  
F. Baccelli ◽  
K. Tchoumatchenko ◽  
S. Zuyev

Consider the Delaunay graph and the Voronoi tessellation constructed with respect to a Poisson point process. The sequence of nuclei of the Voronoi cells that are crossed by a line defines a path on the Delaunay graph. We show that the evolution of this path is governed by a Markov chain. We study the ergodic properties of the chain and find its stationary distribution. As a corollary, we obtain the ratio of the mean path length to the Euclidean distance between the end points, and hence a bound for the mean asymptotic length of the shortest path. We apply these results to define a family of simple incremental algorithms for constructing short paths on the Delaunay graph and discuss potential applications to routeing in mobile communication networks.


2000 ◽  
Vol 32 (1) ◽  
pp. 1-18 ◽  
Author(s):  
F. Baccelli ◽  
K. Tchoumatchenko ◽  
S. Zuyev

Consider the Delaunay graph and the Voronoi tessellation constructed with respect to a Poisson point process. The sequence of nuclei of the Voronoi cells that are crossed by a line defines a path on the Delaunay graph. We show that the evolution of this path is governed by a Markov chain. We study the ergodic properties of the chain and find its stationary distribution. As a corollary, we obtain the ratio of the mean path length to the Euclidean distance between the end points, and hence a bound for the mean asymptotic length of the shortest path.We apply these results to define a family of simple incremental algorithms for constructing short paths on the Delaunay graph and discuss potential applications to routeing in mobile communication networks.


1995 ◽  
Vol 32 (01) ◽  
pp. 90-104 ◽  
Author(s):  
Ronald Meester

Consider a homogeneous Poisson process in with density ρ, and add the origin as an extra point. Now connect any two points x and y of the process with probability g(x − y), independently of the point process and all other pairs, where g is a function which depends only on the Euclidean distance between x and y, and which is nonincreasing in the distance. We distinguish two critical densities in this model. The first is the infimum of all densities for which the cluster of the origin is infinite with positive probability, and the second is the infimum of all densities for which the expected size of the cluster of the origin is infinite. It is known that if , then the two critical densities are non-trivial, i.e. bounded away from 0 and ∞. It is also known that if g is of the form , for some r > 0, then the two critical densities coincide. In this paper we generalize this result and show that under the integrability condition mentioned above the two critical densities are always equal.


2003 ◽  
Vol 40 (03) ◽  
pp. 807-814 ◽  
Author(s):  
S. N. U. A. Kirmani ◽  
Jacek Wesołowski

The mean and the variance of the time S(t) spent by a system below a random threshold until t are obtained when the system level is modelled by the current value of a sequence of independent and identically distributed random variables appearing at the epochs of a nonhomogeneous Poisson process. In the case of the homogeneous Poisson process, the asymptotic distribution of S(t)/t as t → ∞ is derived.


2009 ◽  
Vol 41 (4) ◽  
pp. 911-939 ◽  
Author(s):  
Volker Baumstark ◽  
Günter Last

We consider a stationary Poisson process X of k-flats in ℝd with intensity measure Θ and a measurable set S of k-flats depending on F1,…,Fn∈ X, x∈ℝd, and X in a specific equivariant way. If (F1,…,Fn,x) is properly sampled (in a ‘typical way’) then Θ(S) has a gamma distribution. This result generalizes and unifies earlier work by Miles (1971), Møller and Zuyev (1996), and Zuyev (1999). As a new example, we will show that the volume of the fundamental region of a typical j-face of a stationary Poisson–Voronoi tessellation is conditionally gamma distributed. This is true in the area-biased and the area-debiased cases. In the first case the shape parameter is not integer valued. As another new example, we will show that the generalized integral-geometric contents of the (area-biased and area-debiased) typical j-face of a Poisson hyperplane tessellation are conditionally gamma distributed. In the isotropic case the contents boil down to the mean breadth of the face.


2002 ◽  
Vol 34 (2) ◽  
pp. 281-291 ◽  
Author(s):  
A. Hayen ◽  
M. P. Quine

We study the contribution made by three or four points to certain areas associated with a typical polygon in a Voronoi tessellation of a planar Poisson process. We obtain some new results about moments and distributions and give simple proofs of some known results. We also use Robbins' formula to obtain the first three moments of the area of a typical polygon and hence the variance of the area of the polygon covering the origin.


2009 ◽  
Vol 41 (04) ◽  
pp. 911-939 ◽  
Author(s):  
Volker Baumstark ◽  
Günter Last

We consider a stationary Poisson process X of k-flats in ℝd with intensity measure Θ and a measurable set S of k-flats depending on F 1,…,F n ∈ X, x∈ℝd, and X in a specific equivariant way. If (F 1,…,F n ,x) is properly sampled (in a ‘typical way’) then Θ(S) has a gamma distribution. This result generalizes and unifies earlier work by Miles (1971), Møller and Zuyev (1996), and Zuyev (1999). As a new example, we will show that the volume of the fundamental region of a typical j-face of a stationary Poisson–Voronoi tessellation is conditionally gamma distributed. This is true in the area-biased and the area-debiased cases. In the first case the shape parameter is not integer valued. As another new example, we will show that the generalized integral-geometric contents of the (area-biased and area-debiased) typical j-face of a Poisson hyperplane tessellation are conditionally gamma distributed. In the isotropic case the contents boil down to the mean breadth of the face.


Sign in / Sign up

Export Citation Format

Share Document